25 research outputs found

    A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations

    Get PDF
    Metadata describe the ancillary information needed for data preservation and independent interpretation, comparison across heterogeneous datasets, and quality assessment and quality control (QA/QC). Environmental observations are vastly diverse in type and structure, can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse environmental observations collected across field sites. However, existing metadata reporting protocols do not support the complex data synthesis and model-data integration needs of interdisciplinary earth system research. We developed a metadata reporting framework (FRAMES) to enable management and synthesis of observational data that are essential in advancing a predictive understanding of earth systems. FRAMES utilizes best practices for data and metadata organization enabling consistent data reporting and compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES, resulting in a data reporting format that incorporates existing field practices to maximize data-entry efficiency. Thus, FRAMES has a modular organization that streamlines metadata reporting and can be expanded to incorporate additional data types. With FRAMES\u27s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data originators (persons generating data) and consumers (persons using data and metadata). In this paper, we describe FRAMES, identify lessons learned, and discuss areas of future development

    COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data

    Get PDF
    Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Effects of sample design and landscape features on a measure of environmental heterogeneity

    No full text
    Environmental heterogeneity, an important influence on organisms and ecological processes, can be quantified by the variance of an environmental characteristic over all locations within a study extent. However on landscapes with autocorrelation and gradient patterns, estimating this variance from a sample of locations may lead to errors that cannot be corrected with statistical techniques. We analytically derived the relative expected sampling error of sample designs on landscapes with particular gradient pattern and autocorrelation features. We applied this closed-form approach to temperature observations from an existing study. The expected heterogeneity differed, both in magnitude and direction, amongst sample designs over the study site's likely range of autocorrelation and gradient features. We conducted a simulation study to understand the effects of (i) landscape variability and (ii) design variability on an average sampling error. On 10 000 simulated landscapes with varying gradient and autocorrelation features, we compared estimates of variance from a variety of structured and random sample designs. While gradient patterns and autocorrelation cause large errors for some designs, others yield near-zero average sampling error. Sample location spacing is a key factor in sample design performance. Random designs have larger range of possible sampling errors than structured designs due to the potential for sample arrangements that over- and under-sample certain areas of the landscape. When implementing a new sample design to quantify environmental heterogeneity via variance, we recommend using a simple structured design with appropriate sample spacing. For existing designs, we recommend calculating the relative expected sampling error via our analytical derivation

    AmeriFlux BASE data pipeline to support network growth and data sharing

    No full text
    Abstract AmeriFlux is a network of research sites that measure carbon, water, and energy fluxes between ecosystems and the atmosphere using the eddy covariance technique to study a variety of Earth science questions. AmeriFlux’s diversity of ecosystems, instruments, and data-processing routines create challenges for data standardization, quality assurance, and sharing across the network. To address these challenges, the AmeriFlux Management Project (AMP) designed and implemented the BASE data-processing pipeline. The pipeline begins with data uploaded by the site teams, followed by the AMP team’s quality assurance and quality control (QA/QC), ingestion of site metadata, and publication of the BASE data product. The semi-automated pipeline enables us to keep pace with the rapid growth of the network. As of 2022, the AmeriFlux BASE data product contains 3,130 site years of data from 444 sites, with standardized units and variable names of more than 60 common variables, representing the largest long-term data repository for flux-met data in the world. The standardized, quality-ensured data product facilitates multisite comparisons, model evaluations, and data syntheses
    corecore