114 research outputs found

    (E)-N′-[(E)-3-(4-Hydr­oxy-3-methoxy­phen­yl)allyl­idene]isonicotinohydrazide

    Get PDF
    In the title compound, C16H15N3O3, the dihedral angle between the pyridine and benzene rings is 7.66 (5)°. The crystal packing is consolidated by inter­molecular C—H⋯O and O—H⋯N inter­actions, which link the mol­ecules into zigzag chains propagating along [010]. The chains are further linked into a three-dimensional network by N—H⋯O, C—H⋯N, C—H⋯O and C—H⋯π inter­actions

    Monoclinic polymorph of poly[aqua(μ4-hydrogen tartrato)sodium]

    Get PDF
    A monoclinic polymorph of the title compound, [Na(C4H5O6)(H2O)]n, is reported and complements an ortho­rhom­bic form [Kubozono, Hirano, Nagasawa, Maeda & Kashino (1993 ▶). Bull. Chem. Soc. Jpn, 66, 2166–2173]. The asymmetric unit contains a hydrogen tartrate anion, an Na+ cation and a water mol­ecule. The Na+ ion is surrounded by seven O atoms derived from one independent and three symmetry-related hydrogen tartrate anions, and a water mol­ecule, forming a distorted penta­gonal–bipyramidal geometry. Independent units are linked via a pair of inter­molecular bifurcated O—H⋯O acceptor bonds, generating an R 2 1(6) ring motif to form polymeric two-dimensional arrays parallel to the (100) plane. In the crystal packing, the arrays are linked by adjacent ring motifs, together with additional inter­molecular O—H⋯O inter­actions, into a three-dimensional network

    Triethyl­ammonium 4-nitro­benzene­sulfonate

    Get PDF
    In the anion of the title molecular salt, C6H16N+·C6H4O5S−, the nitro group is twisted slightly from the benzene ring, making a dihedral angle of 3.16 (10)°. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to the ab plane by C—H⋯O and N—H⋯O hydrogen bonds

    1,3-Bis[(3-allyl­imidazol-3-ium-1-yl)meth­yl]benzene bis­(hexa­fluoridophosphate)

    Get PDF
    In the title compound, C20H24N4 2+·2PF6 −, the ethene and 3-allyl­imidazolium moieties of the cation are disordered over two positions with refined site occupancies of 0.664 (19):0.336 (19) and 0.784 (7):0.216 (7), respectively, whereas four F atoms of one hexa­fluoridophosphate anion and all atoms in the other hexa­fluoridophosphate anion are disordered over two positions with refined site occupancies of 0.764 (5):0.2365) and 0.847 (9):0.153 (9), respectively. The benzene ring is inclined at angles of 78.2 (3), 81.3 (4) and 73.9 (12)° with the 1H-imidazol-3-ium ring and the major and minor components of the disordered 1H-imidazol-3-ium ring, respectively. In the crystal, the hexa­fluoridophosphate anions link the cations into two-dimensional networks parallel to (001) via inter­molecular C—H⋯F hydrogen bonds. The crystal structure is further consolidated by π–π [centroid–centroid distance = 3.672 (3) Å] and C—H⋯π inter­actions

    2-{[5-(Adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfan­yl}-N,N-dimethyl­ethanamine

    Get PDF
    In the title compound, C17H28N4S, the 1,2,4-triazole ring is nearly planar [maximum deviation = 0.005 (2) Å]. There are no significant hydrogen bonds observed in the crystal structure. The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3)

    Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.

    Get PDF
    Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course

    Assessment of gene-by-sex interaction effect on bone mineral density

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p < 1 × 10(-5) ) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 and p = 3.0 × 10(-5) ; female effect = -0.007 and p = 3.3 × 10(-2) ), and 11 suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (p < 5 × 10(-8) ) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found to influence BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. © 2012 American Society for Bone and Mineral Research.Medtronic NIH R01 AG18728 R01HL088119 R01AR046838 U01 HL084756 R01 AR43351 P01-HL45522 R01-MH-078111 R01-MH-083824 Nutrition and Obesity Research Center of Maryland P30DK072488 NIAMS/NIH F32AR059469 Instituto de Salud Carlos III-FIS (Spanish Health Ministry) PI 06/0034 PI08/0183 Canadian Institutes of Health Research (CIHR) NHLBI HHSN268201200036C N01-HC-85239 N01-HC-85079 N01-HC-85086 N01-HC-35129 N01 HC15103 N01 HC-55222 N01-HC-75150 N01-HC-45133 HL080295 HL087652 HL105756 NIA AG-023629 AG-15928 AG-20098 AG-027058 N01AG62101 N01AG62103 N01AG62106 1R01AG032098-01A1 National Center of Advancing Translational Technologies CTSI UL1TR000124 National Institute of Diabetes and Digestive and Kidney Diseases DK063491 EUROSPAN (European Special Populations Research Network) European Commission FP6 STRP grant 018947 LSHG-CT-2006-01947 Netherlands Organisation for Scientific Research Erasmus MC Centre for Medical Systems Biology (CMSB) Netherlands Brain Foundation (HersenStichting Nederland) US National Institute for Arthritis, Musculoskeletal and Skin Diseases National Institute on Aging R01 AR/AG41398 R01 AR050066 R21 AR056405 National Heart, Lung, and Blood Institute's Framingham Heart Study N01-HC-25195 Affymetrix, Inc. N02-HL-6-4278 Canadian Institutes of Health Research from Institute of Aging 165446 Institute of Genetics 179433 Institute of Musculoskeletal health 221765 Intramural Research Program of the NIH, National Institute on Aging National Institutes of Health HHSN268200782096C Hong Kong Research Grant Council HKU 768610M Bone Health Fund of HKU Foundation KC Wong Education Foundation Small Project Funding 201007176237 Matching Grant CRCG Grant Osteoporosis and Endocrine Research Fund Genomics Strategic Research Theme of The University of Hong Kong Netherlands Organisation of Scientific Research NWO Investments 175.010.2005.011 911-03-012 Research Institute for Diseases in the Elderly 014-93-015 Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Aging (NCHA) 050-060-810 Erasmus Medical Center and Erasmus University, Rotterdam Netherlands Organization for the Health Research and Development (ZonMw) Research Institute for Diseases in the Elderly (RIDE) Ministry of Education, Culture and Science Ministry for Health, Welfare and Sports European Commission (DG XII) Municipality of Rotterdam German Bundesministerium fur Forschung und Technology 01 AK 803 A-H 01 IG 07015

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore