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Abstract  92 

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total 93 

body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) 94 

and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 95 

60 loci have been identified as associated with BMD. To investigate the genetic determinants of 96 

TB-BMD variation along the life course and test for age-specific effects, we performed a meta-97 

analysis of 30 genome-wide association studies (GWAS) of TB-BMD including 66,628 individuals 98 

overall and divided across five age-strata each spanning 15 years. We identified variants 99 

associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall they 100 

explain approximately 10% of the TB-BMD variance when combining all age groups and 101 

influence the risk of fracture. Pathway and enrichment analysis of the association signals 102 

showed clustering within gene-sets implicated in the regulation of cell growth and SMAD 103 

proteins; overexpressed in the musculoskeletal system; and enrichment in enhancer and 104 

promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of 105 

osteoporosis, enabling the identification of variants and pathways influencing different bone 106 

compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect 107 

dependency on age. This most likely indicate that the majority of genetic variants identified 108 

influence BMD early in life and their effect can be captured throughout the life course.  109 

Introduction 110 

Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration 111 

of bone tissue leading to increased risk of fracture1. It is diagnosed through the measurement 112 
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of bone mineral density (BMD) utilizing dual-energy X-ray absorptiometry (DXA), which is the 113 

single best predictor of fracture1.  114 

Bone is a dynamic tissue constantly undergoing resorption and formation. Bone mass increases 115 

steadily during childhood and markedly during adolescent growth2. Peak bone mass is attained 116 

at approximately the third decade of life. Thereafter, until about 50 years of age, BMD remains 117 

fairly stable, by virtue of the coupling between bone formation and resorption (e.g., bone 118 

remodeling). Subsequently, bone resorption exceeds the rate of bone formation, resulting in a 119 

decrease in BMD, particularly in women after the onset of menopause3.  120 

The International Society for Clinical Densitometry recommends performing DXA 121 

measurements at the lumbar spine, femoral neck and total hip to diagnose osteoporosis in 122 

postmenopausal women and men who are 50 years or older4. Consequently, studies of BMD 123 

determinants are frequently based on measurements at these skeletal sites. By contrast, for the 124 

assessment of bone health in children and adolescents, total body (excluding head) and lumbar 125 

spine are the preferred sites to minimize measurement artifacts resulting from changing areas 126 

in growing bones4. Nevertheless, in elderly individuals degenerative changes in the spine can 127 

give elevated BMD readings5. Moreover, total body DXA scans have been obtained in a number 128 

of adult research cohorts, primarily to assess body composition. Therefore, the total body BMD 129 

(TB-BMD) measurement is the most appropriate method for an unbiased assessment of BMD 130 

variation in the same skeletal site from childhood to old age. 131 

To date, nearly 80 independent genetic variants have been shown to be robustly associated 132 

with variability in bone parameters6-18. Most of these markers have been identified in studies 133 
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comprising tens of thousands of adult and elderly individuals with DXA-derived BMD 134 

measurements, although a few of them have been associated with BMD specifically in studies 135 

of pediatric cohorts8. Furthermore, several of the associated variants display significant site-136 

specific effects, possibly reflecting differences in bone composition across skeletal sites (e.g., 137 

cortical bone vs. trabecular bone) or differential response to mechanical loading8. Moreover, 138 

genetic studies on measures from peripheral quantitative computed tomography (pQCT) and 139 

bone quantitative ultrasound, which provide additional information regarding bone size, 140 

geometry and (micro) architecture identified genetic variants that may have specific effects on 141 

bone properties that are poorly captured by conventional DXA measurements 9-10.  142 

Given the complex physiological processes underlying age-related changes in BMD across the 143 

life course, it is possible that genetic studies in more refined age groups will reveal variants in 144 

unreported loci as well as age-specific genetic effects. Thus, the purpose of this study was to 145 

identify gene variants associated with TB-BMD across the life span and investigate possible 146 

differences of genetic effects across age periods. 147 

  148 
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Methods 149 

TB-BMD GWAS meta-analyses  150 

Study Populations 151 

Subjects 152 

This study comprised 30 epidemiological studies comprising ~66,628 individuals from 153 

populations across America, Europe, and Australia, with a variety of designs (Supplemental 154 

Data; Table S1) and participant characteristics (Table S2). In summary, most participants came 155 

from population-based cohorts of European ancestry (86%), two cohorts comprising African-156 

American individuals (2%) and other four studies holding a fraction of individuals from admixed 157 

background (14%). All research aims and the specific measurements have been approved by the 158 

correspondent Medical Ethical Committee of each participating study. Written informed 159 

consent was provided by all subjects or their parents in the case of children. 160 

BMD measurement 161 

Total body BMD (g/cm2) was measured by DXA following standard manufacturer protocols. As 162 

recommended by the International Society for Clinical Densitometry total body less head (TBLH) 163 

was the measurement used in pediatric cohorts4 (e.g., 0-15 years). Detailed information on the 164 

assessments performed by each study can be found in Table S1.  165 

GWAS data and imputation 166 

All individuals included in this study had genome-wide array data. Quality control of genotypes 167 

is summarized in Table S1. To enable meta-analysis, each study performed genotype 168 
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imputation using the cosmopolitan (all ethnicities combined) 1000 genomes phase 1 version 3 169 

(March 2012) reference panel, yielding ~ 30,000,000 SNPs for analysis. Three studies used the 170 

combined 1000 genomes and the UK10K reference panels as presented in Table S1. 171 

Association Analysis 172 

TB(LH)-BMD was corrected for age, weight, height and genomic principal components (derived 173 

from GWAS data), as well as any additional study-specific covariates (e.g. recruiting center), in a 174 

linear regression model. For studies with non-related individuals, residuals were computed 175 

separately by sex, whereas for family-based studies sex was included as a covariate in the 176 

model. Finally, residuals were inverse normal transformed.  The analyses were performed in 177 

each study for the overall population as well as in subgroups of individuals by age-strata, 178 

defined by bins of 15 years (i.e., 0-15 years, 15-30 years, 30-45 years, 45-60 years, and 60 or 179 

more years). SNP association was tested for autosomal variants, in which the additive effect of 180 

each SNP on the normalized BMD-residuals was estimated via linear regression. 181 

Quality control of TB-BMD association summary statistics  182 

A centralized quality-control procedure implemented in EasyQC19 was applied to all study-183 

specific files of association results to identify cohort-specific issues. We excluded variants if 184 

they had missing information (e.g., missing association P-value, beta estimate, alleles, allele 185 

frequency), or nonsensical values (e.g., absolute beta estimates or standard errors >10, 186 

association P-values >1 or <0; or imputation quality < 0; infinite beta estimates or standard 187 

errors); minor allele frequency (MAF) less than 0.5%; imputation quality scores <0.4 (Impute2) 188 

or <0.3 (Minimac). Moreover, variants were flagged if they had large allele frequency 189 
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deviations from reference populations (>0.6 for admixed studies and >0.3 for ancestry-190 

homogeneous studies). 191 

GWAS meta-analyses  192 

In the first instance, no exclusion criteria based on ancestry were applied for the meta-analysis 193 

(N=66,628).In addition, meta-analyses were carried out across age strata (minimum sample size 194 

per bin N=200 for each study) comprising: 1) 0-15 years (N=11,807), 15-30 years (N=4,180), 30-195 

45 years (N=10,062), 45-60 years (N=18,805), and 60 or more years (N=22,504). Further, 196 

summary data from cohorts of European ancestry only were meta-analyzed and used in 197 

subsequent analyses. We discarded variants present in less than three studies. Approximately 198 

23,700,000 markers (including SNPs and INDELS) were assessed for association. We applied the 199 

conventional genome-wide significance level (GWS, P<5x10-8) for SNP discovery.  200 

Assessment of Age-dependent effects  201 

We selected SNPs which were suggestively (12,567 SNPs, P<5x10-6) associated with BMD in the 202 

overall meta-analysis, present in at least 2 studies per age-bin and with MAF differences across 203 

these meta-analyses lower than 0.5. We clumped this dataset with an r2 ≥ 0.8, using as 204 

reference the most strongly associated SNPs with BMD and, pruning remaining SNPs within 0.7 205 

Mb of each other. Age-dependent effects were assessed using a meta-regression approach for 206 

1,464 SNPs obtained after this selection procedure. We ran a linear regression of the SNP effect 207 

estimates onto an intercept and the median age of each subgroup (e.g., each study stratified in 208 

age-bins). As proposed previously20, standard errors of the effect estimates of each subgroup 209 

were multiplied by the square root of the genomic inflation factor when it was greater than 1. 210 
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We performed the meta-regression using the Metafor package21, and any statistical evidence of 211 

linear association was corrected for multiple testing (Bonferroni correction; 0.05/1,464= 3.4x10-
212 

5). The difference between beta-estimates in children vs. elderly meta-analyses (Pdiff) was 213 

tested using Easy-strata22.  214 

Approximate conditional meta-analyses 215 

Conditional analyses were undertaken based on the meta-analysis of the studies of European 216 

ancestry only (N=56,284). Only variants in the loci that reached GWS in this meta-analysis were 217 

assessed. The Rotterdam Study I (n=6,291) was used as reference for precise calculation of the 218 

linkage disequilibrium (LD) between the analyzed markers. We used an iterative strategy as 219 

implemented in GCTA23 to determine: 1) independence of association signals within loci 220 

discovered in our study, by means of stepwise model selection procedure per chromosome (--221 

massoc-slct routine); and 2) the novelty of the association signals discovered by our meta-222 

analysis with regard to variants reported in previous well-powered GWAS of different bone 223 

traits (Table S3). To this end, we performed the association analysis conditional on 78 variants 224 

present in our data and associated with different bone-traits (--massoc-cond routine). These 78 225 

SNPs were selected from different GWAS publications6-10;12-14 , assuring their independence to 226 

avoid collinearity issues.  227 

 228 

 229 

 230 
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Shared Genetic architecture of TB-BMD fracture and other traits  231 

LD score regression analyses  232 

We used the LD score regression package to estimate the heritability of TB-BMD and rule out 233 

that our results were a product of bias (e.g., residual population stratification or cryptic 234 

relatedness). LD score regression uses GWAS summary statistics and assesses the SNP-235 

heritability based on the expected relationship between linkage disequilibrium (LD) of 236 

neighboring SNPs and strength of association under a polygenic model24. As this methodology 237 

relies on the LD structure throughout the genome, we restricted this analysis to summary 238 

statistics from the meta-analysis of cohorts comprising only individuals from European 239 

ancestry. We used the publicly available, pre-computed LD structure data files specific to 240 

European populations of the HAPMAP 3 reference panel. An extension of this method allows 241 

estimating the genetic correlation between two traits25. This can be performed in the LDhub 242 

pipeline, a web utility which gathers data from many different GWAS meta-analysis26. From the 243 

199 traits, currently available in the website, we have restricted our analysis to those traits 244 

whose heritability z-scores were larger than 4 and were analyzed only in European ancestry 245 

individuals (following the recommendations in the LD score software website (Web 246 

Resources)). Additionally, we incorporated data from a recent GWAS meta-analysis of any-type 247 

of fracture in individuals from European ancestry (N= 264,267; 37,778 cases) (K.T, unpublished 248 

data). In total, we assessed the genetic correlation between TB-BMD and 74 traits.  249 

 250 

 251 
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Mendelian randomization analysis  252 

We undertook a two-sample Mendelian randomization approach27 to estimate the causal effect 253 

of TB-BMD on any-type of fracture in the Europeans samples. In short, we constructed a score 254 

based on the independent genetic variants from the TB-BMD meta-analysis (European set and 255 

excluding secondary signals), whenever the selected variant was not present in the fracture 256 

meta-analysis, the second variant with the lowest p-value in the locus (P<5x10-8) and r2 > 0.8 257 

was used as proxy. Thereafter, estimates derived from the TB-BMD summary statistics were 258 

pooled using methods similar to inverse-variance weighted fixed meta-analysis using the meta 259 

R-package (Web Resources). 260 

Search for biological and functional knowledge of the identified association regions 261 

For all those SNPs outside a 500Kb window from previously known bone associated SNPs we 262 

did a literature search in PubMed and Web of Science to evaluate if nearby genes (within 263 

500Kb) were known to play a role in bone metabolism. Also, we determined if the annotated 264 

genes underlie any human Mendelian disorder with a skeletal manifestation, had knockout 265 

mouse models with a skeletal phenotype or were annotated to pathways critical to bone 266 

metabolism. Genomic annotation for all SNPs was made based on UCSC hg19.  267 

DEPICT analyses  268 

We used DEPICT28, a recently developed tool to prioritize genes at the associated regions, 269 

define possible pathways by enrichment testing, and identify tissue and cell types in which 270 

genes from loci associated with TB-BMD. The methodology first selects all lead SNPs below a 271 

certain threshold with respect to a target P-value. We tested both the complete set of GWS 272 
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SNPs and the subset of those mapping only to loci not previously reported. Enriched gene-set 273 

were group based on the degree of gene overlap into ‘meta gene-sets’ as proposed earlier29, 274 

and their correlation visualized using Cytoscape 3.4 (Web Resources).  275 

Functional annotation to microRNA binding sites 276 

We used the PolymiRTS29, miRdSNP30, and microSNiPer31 databases to obtain a list of variants 277 

located in predicted microRNA binding sites on the 3’UTRs of genes, as described in detail 278 

elsewhere32. In summary, index SNPs (most associated variant) of the GWS loci were submitted 279 

to SNAP (Web Resources) to retrieve their high LD proxy SNPs (with r2 > 0.8, limit distance 500 280 

kb, and CEU panel) in the 1000 genomes project. The resulting list of SNPs was annotated to the 281 

list of microRNA binding site variants obtained from the above mentioned publicly available 282 

databases. 283 

Functional enrichment analysis of trait-associated variants 284 

GWAS Analysis of Regulatory or Functional Information Enrichment with LD correction 285 

(GARFIELD)33 was used to characterize the putative functional contribution of TB-BMD 286 

associated variants mapping to non-coding regions. GARFIELD employs a non-parametric 287 

analysis to calculate fold enrichment values for regulatory marks, at given significance 288 

thresholds and then tests them for significance via permutation testing while accounting for LD, 289 

MAF and local gene density33. We used data regarding DNase I hypersensitive sites, 290 

transcription factor binding sites, histone modifications and chromatin states (ENCODE and 291 

Roadmap Epigenomics) from 424 cell types and tissues to capture and characterize possible 292 

cell-type-specific patterns of enrichment, as provided in the GARFIELD software (Web 293 
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Resources). Fold enrichment statistics were tested at the four different significance thresholds 294 

(i.e., 1×10–8, 1×10–7, 1×10–6 and 1×10−5). Multiple-testing correction was performed on the 295 

effective number of annotations used, using the default P-value threshold of 1×10−4. 296 

Knockout animal models and gene expression in bone cells  297 

Animal models survey  298 

We surveyed databases from The International Mouse Phenotyping Consortium34 together 299 

with The International Knockout Mouse Consortium35 to identify knockout models of 300 

candidate genes resulting in skeletal phenotypes. Furthermore we mined data from The 301 

Origins of Bone and Cartilage Disease (OBCD) project36, specialized in murine skeletal 302 

phenotypes including Digital X-ray microradiography on femurs and tail vertebrae, Micro-CT 303 

analysis, femur three-point bend test load–displacement curves and tail vertebrae 304 

compression testing from knockout mice and wild-type controls at 16 weeks of age.  305 

Gene expression in murine bone cells 306 

Gene expression profiles of candidate genes were examined in primary mouse osteoblasts 307 

undergoing differentiation and bone marrow derived osteoclasts. To study murine 308 

osteoblasts, pre-osteoblast-like cells were obtained from neonatal calvaria collected from 309 

C57BL/6J. Next Generation RNA sequencing using an Illumina HiSeq 2000 was used to 310 

evaluate the transcriptome every two days from day 2 to 18 days post osteoblast 311 

differentiation7. Expression of genes in murine osteoclasts was determined using publicly 312 

available data obtained using Next-Gen RNA-sequencing applied to bone marrow derived 313 

osteoclasts obtained from 6-8 week old C57BL/6 mice37.  314 
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Gene expression in human bone cells  315 

Gene expression profiles of candidate genes were examined in human bone marrow derived 316 

mesenchymal stem cells differentiated into osteoblast. Total RNA (n=3) was isolated at day 0 317 

(MSCs) and day 4 of osteoblast differentiation38. Also, RNA was isolated during osteoclast 318 

differentiation. Peripheral blood mononuclear cells derived from buffy coats (Sanquin, 319 

Amsterdam, the Netherlands) were seeded in 96-well plates (5x105 cells per well) as 320 

previously described39 Total RNA (n=3) was isolated using Trizol at day 0 (PBMCs) and at day 321 

7 of osteoclast differentiation. Illumina HumanHT-12 v3 BeadChip human whole-genome 322 

expression arrays were used for expression profiling. The quality of isolated RNA was 323 

assessed on a 2100 Bioanalyzer (Agilent Technologies). Data were analyzed as described in 324 

detail previously38. Genes were designated as being expressed when at least one probe 325 

coding for the gene was significantly present in at least 2 of the 3 biological replicates.  326 

Results 327 

TB-BMD GWAS meta-analyses  328 

Analyses including all age-strata 329 

Our meta-analysis of TB-BMD GWAS summary statistics (N=66,628) identified variants in 76 330 

independent loci associated with TB-BMD at a genome-wide significant (GWS, P<=5x10-8) level 331 

(Figure 1, Table S4). Overall, there was no evidence of a strong inflation (genomic inflation 332 

factor () of 1.08, Figure S1). Yet, inflation was observed in the range of common variants 333 

(0.2>MAF<0.5, =1.19) due to polygenicity (LD score regression intercept = 1.007). In our 334 

results, one of the signals mapping to LDLRAD3 was driven entirely by individuals of African 335 
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background (MAF=0.043 in YRI panel) since the two associated variants are monomorphic in all 336 

other populations. The low allele frequency of this variant in our study (MAF= 0.025) and our 337 

limited statistical power (N=6,748) in non-European samples warrants independent replication 338 

efforts to exclude the possibility of a false-positive association.  339 

In addition, a meta-analysis comprising 56,284 individuals of European ancestry (~84% of the 340 

study population) identified variants in two additional GWS loci (Figures S1-S2, Table S5). 341 

Association signals mapping to these loci were close to the GWS threshold in the overall meta-342 

analysis (P=1x10-7) and showed no evidence of heterogeneity (Phet>0.1). One of them, in 343 

12q24.21 (MED13L), has not been previously associated with bone parameters (Table 1, Figure 344 

S3), while the other in 21q22.13 (CLDN14), is not fully independent from the previously 345 

reported hip-BMD association signal13 (Table S5).  346 

Of the 78 identified loci, variants in 35 (45%) were not located within 500 kb of known 347 

association signals nor in regions of extended LD with them (Table 1, Figure S4). Index SNPs at 348 

these 35 loci were, in general, common non-coding variants. Twenty-two of these, are located 349 

in close proximity to genes likely to influence bone metabolism as shown by previous functional 350 

studies (Table 1, Figure S3), including CSF1 ([MIM 120420] important for osteoclast 351 

differentiation40) and SMAD3 ([MIM 603109] a critical component of the TGF-beta signaling 352 

pathway41). Across these 35 signals, 31 of the index SNPs were nominally associated (P<0.05) 353 

with either lumbar spine or femoral neck BMD in the same direction as in the previously 354 

published GEFOS GWAS meta-analysis7 (Table 1). This comparison was not possble for the 355 

rs113964474 variant, because it was not available in the GEFOS study. Moreover, we found 356 

directionally-concordant effect estimates (P < 0.05) for 73 of the 78 index SNPs of known bone 357 
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association signals (Table S3). The markers which failed to replicate in our study were either 358 

previously associated with lumbar spine BMD but not femoral neck BMD (rs3905706 [MPP7, 359 

10p12.1] and rs1878526 [INSIG2, 2q14.2]), associated specifically with the hip trochanter and 360 

intertrochanteric subregions (rs1949542 [RP11-384F7.1, 3q13.32]), or associated with BMD 361 

only in women (rs7017914 [XKR9, 8q13.3]) or only in children (rs754388 [RIN3, 14q32.12]).  362 

Age-dependent effects  363 

Meta-analyses across age strata resulted in the identification of variants mapping to 2 364 

additional loci that were not detected in the overall meta-analysis (Figure S5; Table S6). In 365 

children (age group 0-15 years), the previously known 14q32.12 locus8, harboring RIN3 366 

(rs72699866, P=1x10-8); and in the middle-aged (age group 45-60 years), a signal in the 19q12 367 

locus mapping in the vicinity of  TSHZ3 (rs6510186, P=3.1x10-8) were identified. The rs72699866 368 

variant leading the RIN3 signal in the youngest age stratum showed no evidence of association 369 

(P=0.16) and high heterogeneity (Phet=6.6x10-5) in the overall meta-analysis. In fact, the effect of 370 

rs72699866 decreased significantly with age (Ptrend=1.69x10-9) (Figure S6) and showed a 371 

significant difference between the two extreme groups, i.e. children vs elderly (β0-15=0.099 372 

[0.066, 0.134]; β>60=-0.035 [-0.060, -0.010]; Pdiff=4.32x10-10). In contrast, the rs6510186 variant 373 

[19q12] showed nominal evidence of association and heterogeneity in the overall meta-analysis 374 

(P=0.02; Phet=0.03). Nevertheless, no clear pattern of age-dependency was identified (P=0.2) for 375 

this SNP (Figure S6). 376 

We also applied meta-regression analysis and found that variants mapping to 42 different loci 377 

showed nominally significant age dependent effect (P<0.05) (Table S7, Figure S7). In summary, 378 
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27 (64%) of the loci showed stronger effects in the older age groups. Of these, variants in the 379 

6q25.1 (ESR1) and 13q14.11 (RANKL) loci remained significant after multiple-testing correction 380 

(P<3.4x10-5) (Figure 2); while variants in 6p21.1 (RUNX2, rs148460475), 15q21.2 (CYP19A1, 381 

rs2414098), 17q21.31 (MEOX1, rs74835612) and 11p15.1 (SOX6, rs11822790) were only 382 

suggestive at P<1x10-3.  383 

Conditional association analyses  384 

The step-wise conditional approach included studies comprising only individuals of European 385 

ancestry, as the method used relies on appropriate representability of the LD reference. Of the 386 

76 GWS loci identified in the overall analysis, variants in 57 (19 previously unreported) loci were 387 

also GWS in the European-only analysis (Figure S2), likely a consequence of the lower power in 388 

this subgroup. We identified 81 SNPs independently associated with TB-BMD mapping to 58 389 

different loci (one European-specific), 18 of which depicted multiple distinct signals attaining 390 

GWS (Table S8). These independent variants together explained 10.2% of TB-BMD variance. 391 

This proportion is slightly higher than the 7.4% TB-BMD variance explained by the 78 known 392 

variants associated with bone traits. Moreover, we identified independent signals in 13 of the 393 

78 known bone loci after conditional analyses. (Figure S2; Table S8). 394 

Shared Genetic architecture of TB-BMD, fracture and other traits  395 

SNP-heritability of TB-BMD in the European samples was estimated to be 0.259 (SE 0.017). TB-396 

BMD was highly genetically correlated with BMD measured at other skeletal sites (ρ>0.9). 397 

Among the non-BMD traits, all-type of fracture showed the highest correlation [ρ=-0.61 398 

(P=1.6x10-27)]. The MR approach indicated a strong causal relation where per 1 standard 399 
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deviation decrease in genetically determined TB-BMD there is 56% increase in the risk of 400 

fracture (Odds ratio 1.56 [1.50-1.62]). Other anthropometric, metabolic and disease traits 401 

showed significant (yet weak) correlation with TB-BMD (Table S9, Figure 3). In contrast, other 402 

established risk factors for osteoporosis such as menopause or age of menarche showed no 403 

significant genetic correlation with TB-BMD. 404 

Biological and functional knowledge of the genes in BMD-associated loci 405 

Loci not previously reported and their potential role in bone metabolism are summarized in 406 

Table 1. Several loci harbor genes implicated directly in bone metabolism (SLC8A1 [MIM 407 

182305], PLCL1 [MIM 600597], ADAMTS5 [MIM 605007]), affecting osteoblast or osteoclast 408 

differentiation and activity (CSF1 [MIM 120420],, DUSP5 [MIM 603069], SMAD3 [MIM 603109], 409 

SMAD9 [MIM 603295], CD44 [MIM 107269]), participating in Wnt signaling (FZD7 [MIM 410 

603410], TCF7L1 [MIM 604652]), or regulating processes such as manganese or calcium 411 

absorption (GCKR [MIM 600842], DGKD [MIM 601826], SLC30A10 [MIM 611146]) among others 412 

40-61; while genes in at least 14 loci exert a potential novel role in bone biology. Rodent 413 

knockout models of several genes in the implicated loci, show an altered skeletal phenotype 414 

(e.g., ostoepetrosis [Csf140], increased bone resorption [Aqp150, Cyp19a157, Cd4453], impaired 415 

skeletogenesis [Apc49, Runx160, Smad341], deformities in the axial skeleton [Btg162, Atpaf263]). 416 

Whereas an effect on bone can be inferred for genes in other associated loci, for example, 417 

CYP19A1 [MIM 107910] in 15q21.2 is an estrogen synthesis gene, being estrogen a key 418 

compound for bone maturation and maintenance, and ZKSCAN5 [MIM 611272] in 7q22.1 is 419 

associated with circulating dehydroepiandrosterone sulphate (DHEAS) levels51. DHEAS levels 420 

are positively correlated with BMD in adults and post-menopausal women64. Across these loci, 421 
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not previously reported as associated with BMD variation, we identified six exonic variants 422 

associated with TB-BMD, three of which were nonsynonymous variants all cataloged as benign 423 

both by SIFT and polyphen2. We also identified 53 GWS coding variants in known loci, of which 424 

33 are non-synonymous (Table S10). Only a low-frequency variant in LRP5 [MIM 603506], 425 

rs4988321/A (11:68174189, MAF=0.04), has a clinical annotation, constituting a homozygous G-426 

to-A transition variant identified in a person with osteoporosis-pseudoglioma syndrome (OPPG 427 

[MIM 259770])65.  428 

DEPICT analyses 429 

Based on the overall meta-analysis, 53 genes were prioritized (FDR<0.05), 15 of them mapping 430 

to loci not previously described (Table S11). Cells and tissues from the musculoskeletal system 431 

presented the largest enrichment of gene expression within the associated loci (Figure 4). 432 

These genes were overrepresented in 182 pathways clustered in 25 ‘meta gene-sets’ (Table 433 

S12). The large majority of the clusters are involved in musculoskeletal development and bone 434 

homeostasis (Figure 4). The most significant of these implicated the regulation of cell growth, 435 

and the TGFB signaling pathway and its mediating SMAD proteins.  436 

Restricting the DEPICT analysis to the subset of not previously reported associated regions 437 

resulted in significant enrichment of genes expressed in the musculoskeletal and immunological 438 

systems (Figure S8). Genes mapping to these loci were overrepresented in the SMAD binding 439 

pathway and TGFBR2 PPI (protein-protein interaction) subnetwork (FDR<0.05).  440 

Functional annotation to microRNA binding sites 441 
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We then assessed if the index SNPs of the 80 GWS loci detected in the main and subsequent 442 

GWAS (or their proxies in strong LD; r2>0.8) were located in predicted microRNA binding sites 443 

within the genes’ 3’UTRs and thus, were expected to disrupt the regulation of gene expression 444 

(Table S13). The index SNP within the 3’UTR of ZKSCAN5 (mapping to a locus not previously 445 

identified), rs34670419 (MAF=0.04), is predicted to create a binding site for miR-382-3p, a 446 

microRNA which is expressed in osteocytes and has been recently shown to be involved in 447 

osteogenic differentiation66. In addition, eight proxy SNPs (mapping to PSMD13, ABCF2, 448 

GALNT3, PKDCC, REEP5, PPP6R3, AAGAB and TOM1L2) are predicted to influence the binding of 449 

microRNAs to transcripts of their host gene.  450 

Functional enrichment analysis of trait-associated variants 451 

As typically found in GWAS, the great majority of identified associations emerged from non-452 

coding common variants and hold no direct annotation to molecular mechanisms. 453 

To assess if there is relative enrichment of regulatory genomic marks underlying the associated 454 

variants in a cell-specific context, we used GARFIELD33. We found relative ubiquitous 455 

enrichment for TB-BMD variants (Empirical P<2.4x10-4) in DNase I hypersensitive sites across 456 

the different cell types (Figure S9). Further, we found higher levels of fold-enrichment for 457 

enhancers (median 3.6, range [2.7, 4.4]) and promotors (median 3.2, range [2.9, 3.5]) than for 458 

transcribed regions (median 1.8, range [1.5, 2.2]). 459 

Gene expression in bone cells and knockout animal models 460 

From the 53 genes prioritized by DEPICT only 49 had a mouse orthologue (Table S14). From 461 

these genes, only Mepe (osteocyte-specific) and Foxl1 were not expressed in murine osteoblast 462 
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or osteoclast. Moreover, 61% of the prioritized genes were expressed in human cells in vitro 463 

during osteoblast or osteoclast differentiation (Table S14). AQP1 was the only prioritized gene 464 

mapping to a locus not previously reported showing no expression in the human bone cells 465 

differentiation experiments.  466 

Knockout models were widely available in at least one of the different databases assessed. 467 

Nevertheless in-depth bone phenotyping performed under the OBCD project was only available 468 

for four knockout models (Table S15). Two of these, DUSP5 and CD300LG showed no significant 469 

bone phenotype. The TCF7L1 knockout model only showed lower cortical diameter in the femur 470 

without other clear bone phenotype. Nevertheless, TCF7L1 was shown to be expressed during 471 

osteoblastogenesis. Conversely, homozygous knockout for CREB3L1 showed a clear bone 472 

phenotype consisting of low BMC both at the vertebrae and femur together with a strong 473 

trabecular and cortical phenotype affecting bone strength (Figure S10). CREB3L1 maps to 474 

11p11.2, a previously identified BMD locus6 harboring ARHGAP1 and LRP4 as candidates to 475 

underlie the GWAS signal in a region of extended LD.  476 

Discussion  477 

This meta-analysis of TB-BMD comprising up to 66,000 individuals identified variants in 36 loci 478 

not previously reported and replicated at GWS level several association signals identified by 479 

GWAS of diverse bone phenotypes. Bioinformatics analyses suggest enrichment of these 36 loci 480 

for genes expressed in the musculoskeletal system, and solidly represented in the SMAD 481 

binding pathway and the TGFBR2 PPI subnetwork. We also demonstrate that for variants in few 482 

loci the size of the effect is age dependent; variants in two loci (RIN3 and TSHZ3) were 483 
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identified only by the age-stratified analyses despite less power (smaller sample size); while for 484 

variants in two other loci (ESR1 and RANKL) there was significant evidence of age heterogeneity 485 

derived from a meta-regression of the genetic effects with age. Our results strengthen the 486 

evidence that genetic variants influence BMD from a young age and support the value of peak 487 

bone mass as an important determinant of bone health later in life.  488 

Traditionally, DXA-BMD measurements performed at sites of high fracture risk (i.e., femoral 489 

neck, lumbar spine and forearm) have been used in genetic epidemiological investigations of 490 

bone health in adults. Instead, we have used BMD measurements derived from total body 491 

scans. Not only do we show a high overlap of association signals with previous GWAS of 492 

different bone traits, including DXA, pQCT and ultrasound measurements, but we have also 493 

identified unreported loci. Five known associations failed to replicate in our studies, even 494 

though we cannot discard these associations constitute false-positives, these results might also 495 

indicate that variants whose effect is highly specific to skeletal sites, skeletal properties, sex or 496 

age groups cannot be detected in our TB-BMD meta-analysis. It is plausible that more variants 497 

of this type exist and will be discovered as site-specific BMD meta-analyses are performed in 498 

increasingly powered settings. Furthermore, the genetic correlation of TB-BMD with BMD 499 

measured at other sites was close to one. Whilst, we found that a decrease of one standard 500 

deviation in the genetically determined TB-BMD resulted in at least 50% higher odds of 501 

suffering a fracture. Significant genetic correlations with other traits (i.e., BMI, IGF1 and 502 

ulcerative colitis) reflect the systemic context of skeletal biology and merit further study by 503 

future efforts to elucidate the underlying mechanisms. 504 
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Genes in the associated loci were highly expressed in the musculoskeletal system and 505 

overrepresented in gene-sets related to bone development. The prioritized gene CREB3L1 [MIM 506 

616215] in 11p11.2 observed a clear bone phenotype in our mouse knockout model, which 507 

corroborates the findings of previous work showing substantial rescue of CREB3L1 deficiency 508 

with bisphosphonates and its critical role for bone formation67. This locus characterized by 509 

extended LD, also harbors LRP4 [MIM 604270] whose knockout model presents with increased 510 

trabecular and cortical bone mass68. This is in line with our conditional analysis identifying 511 

multiple independent signals in the region making it likely that both genes are influencing bone 512 

biology. Altogether, we demonstrated that TB-BMD offers a powerful alternative to identify 513 

genetic variants associated with bone metabolism.  514 

Variants mapping to 14q32 harboring RIN3 [MIM 610223] were only associated at a GWS level 515 

in children (i.e., <15 years), and were only nominally significant in the elderly group (i.e., >60 516 

years). This age-related heterogeneity may explain why this locus has not been detected in 517 

BMD meta-analyses in adults, although being identified in relation to pediatric BMD8 and 518 

Paget`s disease (PDB [602080]) GWAS69. In addition, another signal mapping to 19q12 519 

harboring TSHZ3 [MIM 614119] was significant in adults aged 45-60 years but not in other age 520 

groups analyzed or in previous studies, alluding to a false-positive association, thus replication 521 

of this finding is necessary.  522 

Our analyses revealed variants in the 6q25.1 (ESR1) and 13q14.11 (RANKL) loci demonstrating 523 

the most compelling evidence for age-modulation effects. The 6q25.1 locus harboring ESR1 524 

[MIM 133430], an important genetic factor in normal BMD variability, was not associated with 525 

BMD in children below 15 years of age, where the largest cohorts (i.e., Avon Longitudinal Study 526 
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of Parents and Children (ALSPAC) and the Generation R Study) comprise predominantly pre-527 

pubertal children. As levels of estradiol before puberty are low70, a negligible effect of ESR1 528 

variants on BMD is expected. Likewise, in mouse models the expression of RANKL [MIM 529 

602642] in bone is markedly increased with advancing age from young to adult and related to 530 

bone loss71. Accordingly, variants influencing RANKL expression show a larger effect later in life. 531 

In general, a substantial heterogeneity of the genetic effects in the overall meta-analysis was 532 

explained by age, nevertheless, the inclusion of larger sample sizes (avoiding age exclusion 533 

criteria and incrementing statistical power) leveled off the loss of power due to the 534 

heterogeneity of the genetic effects.     535 

In brief, variants with evidence of age-specific effects were exceptional in our study. These 536 

results might reflect a lack of statistical power as only SNPs showing suggestive evidence 537 

(P<5x10-6) of association with TB-BMD in the overall meta-analysis were tested for age-specific 538 

effects. This selection criteria aimed to include SNPs whose heterogeneity might have 539 

hampered their statistical significance in the overall meta-analysis, and at the same time 540 

maximize the power to discover variants with real age-dependet effects. Alternatively, these 541 

results indicate that most of the genetic variants identified so far, by us and others, influence 542 

BMD from early ages onwards, and their effect persist throughout the life course. However, 543 

variants in 27 of the 42 loci (64%) showing nominal evidence for age dependent effects had 544 

larger effects in the older groups. Nonetheless, this requires careful interpretation given the 545 

uneven sample sizes between the age groups and the criteria to select markers for the meta-546 

regression based on significance in the overall meta-analysis. Collectively, this argues in favor of 547 
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enlarging studies focused on younger populations –where the statistical power is still restricted 548 

– to discover additional genetic variants influencing BMD.   549 

Our study has some limitations. A key disadvantage of our design is that we group the data 550 

based on age spans rather than life stages. Crucial information for this assesment, such as 551 

puberty onset in children and adolecents or menopausal status in the adults, was not available 552 

across the majority of the cohorts. Other strategies like using shorter age spans will resulted in 553 

even less statistical power of the discovery setting. Similarly, despite the large sample size of 554 

our study, we identified very few variants in the low-frequency spectrum (MAF <5%) indicating 555 

that comprehensive surveys of rare variation influencing BMD still require even larger sample 556 

sizes, on top of better resources for imputation of the rarer variants, possibly needing 557 

population-specific references. Such strategies will be key to explain a larger fraction of the 558 

genetic variability of BMD phenotypes, as illustrated for other traits such as height or BMI72. 559 

Moreover, the identified SNPs are in their vast majority, non-coding variants, raising the 560 

possibility that the causal genes are different from the candidate genes we have prioritized 561 

based on the current biological knowledge and bioinformatic prediction tools. Additional 562 

functional studies are required to determine the potential role of the genes in the identified 563 

loci.  564 

In conclusion, we performed a genome-wide survey for association with DXA derived TB-BMD, 565 

combining data from five age groups including children and older individuals. In contrast to 566 

previous large-scale meta-analyses6;7, we used DXA derived TB-BMD rather than measurements 567 

on specific skeletal sites prone to fracture to identify genetic factors influencing BMD variation. 568 

We demonstrate that TB-BMD is a valid phenotype for this purpose, as we replicated more than 569 



26 
 

90% of the previously reported signals. Most importantly, we identify variants in 36 loci 570 

associated with TB-BMD not previously reported by previous GWAS of bone phenotypes. Our 571 

results show steadiness in the magnitude of the genetic effects on BMD for most of the BMD-572 

associated variants. While the contrasting skeletal physiology across different age periods is 573 

well established (i.e. endochondral ossification, linear growth, modelling, 574 

remodeling, etc.), peak bone mass acquisition remains the major determinant of variability at 575 

any age. These findings strongly support the importance of the bone accrual process in the 576 

definition of BMD status and fracture susceptibility throughout the life course.   577 

Accession Numbers 578 

GWAS Summary data for the main and age-strata meta-analyses together with the 579 

corresponding regional plots of GWS signals have been deposited in the GEFOS website (Web 580 

Resources). Gene expression data presented in this paper can be retrieved from the Gene 581 

Expression Omnibus (GEO) as follows: Murine osteoclasts (GSM1873361) and osteoblasts 582 

(GSE54461); human osteoblast differentiation (GSE54461).  583 

Supplemental Data 584 

Supplemental data include a full list of acknowledgements, cohort short descriptions, 15 585 

tables and 10 figures. 586 

Acknowledgements  587 

The authors would like to thank the many colleagues who contributed to collection and 588 

phenotypic characterization of the clinical samples, as well as genotyping and analysis of the 589 



27 
 

GWAS data. Part of this work was conducted using the UK Biobank resource. 590 

Conflict of interests 591 

Psaty serves on the DSMB of a clinical trial for the manufacturer (Zoll LifeCor) and on the 592 

Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. 593 

 594 

Web Resources 595 

GARFIELD, http://www.ebi.ac.uk/birney-srv/GARFIELD/GEFOS, http://www.gefos.org/  596 

LDhub, http://ldsc.broadinstitute.org/ 597 

Meta R-package, https://github.com/guido-s/meta) 598 

OBCD, http://www.boneandcartilage.com/ 599 

OMIM, http://www.omim.org/ 600 

SNAP, http://archive.broadinstitute.org/mpg/snap/ 601 

http://www.ebi.ac.uk/birney-srv/GARFIELD/
http://ldsc.broadinstitute.org/
https://github.com/guido-s/meta)
http://www.boneandcartilage.com/
http://www.omim.org/
http://archive.broadinstitute.org/mpg/snap/


28 
 

References 

1. Johnell, O., Kanis, J.A., Oden, A., Johansson, H., De Laet, C., Delmas, P., Eisman, J.A., Fujiwara, S., 

Kroger, H., Mellstrom, D., et al. (2005). Predictive value of BMD for hip and other fractures. J 

Bone Miner Res 20, 1185-1194. 

2. Farr, J.N., and Khosla, S. (2015). Skeletal changes through the lifespan--from growth to senescence. 

Nat Rev Endocrinol 11, 513-521. 

3. Hendrickx, G., Boudin, E., and Van Hul, W. (2015). A look behind the scenes: the risk and pathogenesis 

of primary osteoporosis. Nat Rev Rheumatol 11, 462-474. 

4. International Society for Clinical Densitometry. (2015). Official ISCD Positions – Adult & Pediatric 

individuals, http://www.iscd.org/official-positions/ 

5. Tenne, M., McGuigan, F., Besjakov, J., Gerdhem, P., and Akesson, K. (2013). Degenerative changes at 

the lumbar spine--implications for bone mineral density measurement in elderly women. 

Osteoporos Int 24, 1419-1428. 

6. Estrada, K., Styrkarsdottir, U., Evangelou, E., Hsu, Y.H., Duncan, E.L., Ntzani, E.E., Oei, L., Albagha, 

O.M., Amin, N., Kemp, J.P., et al. (2012). Genome-wide meta-analysis identifies 56 bone mineral 

density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44, 491-501. 

7. Zheng, H.F., Forgetta, V., Hsu, Y.H., Estrada, K., Rosello-Diez, A., Leo, P.J., Dahia, C.L., Park-Min, K.H., 

Tobias, J.H., Kooperberg, C., et al. (2015). Whole-genome sequencing identifies EN1 as a 

determinant of bone density and fracture. Nature 526, 112-117. 

8. Kemp, J.P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D.H., Warrington, N.M., Oei, L., 

Ring, S.M., Kruithof, C.J., Timpson, N.J., et al. (2014). Phenotypic dissection of bone mineral 

density reveals skeletal site specificity and facilitates the identification of novel loci in the 

genetic regulation of bone mass attainment. PLoS Genet 10, e1004423. 

9. Paternoster, L., Lorentzon, M., Lehtimaki, T., Eriksson, J., Kahonen, M., Raitakari, O., Laaksonen, M., 

Sievanen, H., Viikari, J., Lyytikainen, L.P., et al. (2013). Genetic determinants of trabecular and 

cortical volumetric bone mineral densities and bone microstructure. PLoS Genet 9, e1003247. 

10. Moayyeri, A., Hsu, Y.H., Karasik, D., Estrada, K., Xiao, S.M., Nielson, C., Srikanth, P., Giroux, S., Wilson, 

S.G., Zheng, H.F., et al. (2014). Genetic determinants of heel bone properties: genome-wide 

association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum Mol Genet 

23, 3054-3068. 



29 
 

11. Medina-Gomez, C., Kemp, J.P., Estrada, K., Eriksson, J., Liu, J., Reppe, S., Evans, D.M., Heppe, D.H., 

Vandenput, L., Herrera, L., et al. (2012). Meta-analysis of genome-wide scans for total body BMD 

in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. 

PLoS Genet 8, e1002718. 

12. Yang, T.L., Guo, Y., Liu, Y.J., Shen, H., Liu, Y.Z., Lei, S.F., Li, J., Tian, Q., and Deng, H.W. (2012). Genetic 

variants in the SOX6 gene are associated with bone mineral density in both Caucasian and 

Chinese populations. Osteoporos Int 23, 781-787. 

13. Zhang, L., Choi, H.J., Estrada, K., Leo, P.J., Li, J., Pei, Y.F., Zhang, Y., Lin, Y., Shen, H., Liu, Y.Z., et al. 

(2014). Multistage genome-wide association meta-analyses identified two new loci for bone 

mineral density. Hum Mol Genet 23, 1923-1933. 

14. Pei, Y.F., Xie, Z.G., Wang, X.Y., Hu, W.Z., Li, L.B., Ran, S., Lin, Y., Hai, R., Shen, H., Tian, Q., et al. (2016). 

Association of 3q13.32 variants with hip trochanter and intertrochanter bone mineral density 

identified by a genome-wide association study. Osteoporos Int. 

15. Styrkarsdottir, U., Thorleifsson, G., Eiriksdottir, B., Gudjonsson, S.A., Ingvarsson, T., Center, J.R., 

Nguyen, T.V., Eisman, J.A., Christiansen, C., Thorsteinsdottir, U., et al. (2016). Two Rare 

Mutations in the COL1A2 Gene Associate With Low Bone Mineral Density and Fractures in 

Iceland. J Bone Miner Res 31, 173-179. 

16. Koller, D.L., Zheng, H.F., Karasik, D., Yerges-Armstrong, L., Liu, C.T., McGuigan, F., Kemp, J.P., Giroux, 

S., Lai, D., Edenberg, H.J., et al. (2013). Meta-analysis of genome-wide studies identifies WNT16 

and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner 

Res 28, 547-558. 

17. Nielson, C.M., Liu, C.T., Smith, A.V., Ackert-Bicknell, C.L., Reppe, S., Jakobsdottir, J., Wassel, C., 

Register, T.C., Oei, L., Alonso, N., et al. (2016). Novel Genetic Variants Associated With Increased 

Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of 

SLC1A3 and EPHB2. J Bone Miner Res 31, 2085-2097. 

18. Styrkarsdottir, U., Thorleifsson, G., Gudjonsson, S.A., Sigurdsson, A., Center, J.R., Lee, S.H., Nguyen, 

T.V., Kwok, T.C., Lee, J.S., Ho, S.C., et al. (2016). Sequence variants in the PTCH1 gene associate 

with spine bone mineral density and osteoporotic fractures. Nat Commun 7, 10129. 

19. Winkler, T.W., Day, F.R., Croteau-Chonka, D.C., Wood, A.R., Locke, A.E., Magi, R., Ferreira, T., Fall, T., 

Graff, M., Justice, A.E., et al. (2014). Quality control and conduct of genome-wide association 

meta-analyses. Nat Protoc 9, 1192-1212. 



30 
 

20. Simino, J., Shi, G., Bis, J.C., Chasman, D.I., Ehret, G.B., Gu, X., Guo, X., Hwang, S.J., Sijbrands, E., Smith, 

A.V., et al. (2014). Gene-age interactions in blood pressure regulation: a large-scale investigation 

with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet 95, 24-38. 

21. Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 36, 1-

48. 

22. Winkler, T.W., Kutalik, Z., Gorski, M., Lottaz, C., Kronenberg, F., and Heid, I.M. (2015). EasyStrata: 

evaluation and visualization of stratified genome-wide association meta-analysis data. 

Bioinformatics 31, 259-261. 

23. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A.F., Heath, A.C., Martin, N.G., 

Montgomery, G.W., Weedon, M.N., Loos, R.J., et al. (2012). Conditional and joint multiple-SNP 

analysis of GWAS summary statistics identifies additional variants influencing complex traits. 

Nature Genetics 44, 369-U170. 

24. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working Group of the 

Psychiatric Genomics, C., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015). LD Score 

regression distinguishes confounding from polygenicity in genome-wide association studies. Nat 

Genet 47, 291-295. 

25. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., ReproGen, C., Psychiatric 

Genomics, C., Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control, C., 

Duncan, L., et al. (2015). An atlas of genetic correlations across human diseases and traits. Nat 

Genet 47, 1236-1241. 

26. Zheng, J., Erzurumluoglu, A.M., Elsworth, B.L., Kemp, J.P., Howe, L., Haycock, P.C., Hemani, G., 

Tansey, K., Laurin, C., Early, G., et al. (2017). LD Hub: a centralized database and web interface to 

perform LD score regression that maximizes the potential of summary level GWAS data for SNP 

heritability and genetic correlation analysis. Bioinformatics 33, 272-279. 

27. Burgess, S., Butterworth, A., and Thompson, S.G. (2013). Mendelian randomization analysis with 

multiple genetic variants using summarized data. Genet Epidemiol 37, 658-665. 

28. Pers, T.H., Karjalainen, J.M., Chan, Y., Westra, H.J., Wood, A.R., Yang, J., Lui, J.C., Vedantam, S., 

Gustafsson, S., Esko, T., et al. (2015). Biological interpretation of genome-wide association 

studies using predicted gene functions. Nature Communications 6. 

29. Bhattacharya, A., Ziebarth, J.D., and Cui, Y. (2014). PolymiRTS Database 3.0: linking polymorphisms in 

microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids 

Res 42, D86-91. 



31 
 

30. Gong, J., Tong, Y., Zhang, H.M., Wang, K., Hu, T., Shan, G., Sun, J., and Guo, A.Y. (2012). Genome-

wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding 

and biogenesis. Hum Mutat 33, 254-263. 

31. Barenboim, M., Zoltick, B.J., Guo, Y., and Weinberger, D.R. (2010). MicroSNiPer: a web tool for 

prediction of SNP effects on putative microRNA targets. Hum Mutat 31, 1223-1232. 

32. Ghanbari, M., Franco, O.H., de Looper, H.W., Hofman, A., Erkeland, S.J., and Dehghan, A. (2015). 

Genetic Variations in MicroRNA-Binding Sites Affect MicroRNA-Mediated Regulation of Several 

Genes Associated With Cardio-metabolic Phenotypes. Circ Cardiovasc Genet 8, 473-486. 

33. Iotchkova, V., Ritchie, G.R.S., Geihs, M., Morganella, S., Min, J.L., Walter, K., Timpson, N.J., Dunham, 

I., Birney, E., and Soranzo, N. (2016). GARFIELD - GWAS Analysis of Regulatory or Functional 

Information Enrichment with LD correction. bioRxiv. 

34. Dickinson, M.E., Flenniken, A.M., Ji, X., Teboul, L., Wong, M.D., White, J.K., Meehan, T.F., Weninger, 

W.J., Westerberg, H., Adissu, H., et al. (2016). High-throughput discovery of novel 

developmental phenotypes. Nature 537, 508-514. 

35. Hrabe de Angelis, M., Nicholson, G., Selloum, M., White, J.K., Morgan, H., Ramirez-Solis, R., Sorg, T., 

Wells, S., Fuchs, H., Fray, M., et al. (2015). Analysis of mammalian gene function through broad-

based phenotypic screens across a consortium of mouse clinics. Nat Genet 47, 969-978. 

36. Freudenthal, B., Logan, J., Sanger Institute Mouse, P., Croucher, P.I., Williams, G.R., and Bassett, J.H. 

(2016). Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J 

Endocrinol 231, R31-46. 

37. Kim, K., Punj, V., Kim, J.M., Lee, S., Ulmer, T.S., Lu, W., Rice, J.C., and An, W. (2016). MMP-9 

facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient 

osteoclastogenesis. Genes Dev 30, 208-219. 

38. van de Peppel, J., Strini, T., Tilburg, J., Westerhoff, H., van Wijnen, A.J., and van Leeuwen, J.P. (2017). 

Identification of Three Early Phases of Cell-Fate Determination during Osteogenic and 

Adipogenic Differentiation by Transcription Factor Dynamics. Stem Cell Reports 8, 947-960. 

39. Koek, W.N.H., van der Eerden, B.C.J., Alves, R., van Driel, M., Schreuders-Koedam, M., Zillikens, M.C., 

and van Leeuwen, J. (2017). Osteoclastogenic capacity of peripheral blood mononuclear cells is 

not different between women with and without osteoporosis. Bone 95, 108-114. 

40. Dobbins, D.E., Sood, R., Hashiramoto, A., Hansen, C.T., Wilder, R.L., and Remmers, E.F. (2002). 

Mutation of macrophage colony stimulating factor (Csf1) causes osteopetrosis in the tl rat. 

Biochem Biophys Res Commun 294, 1114-1120. 



32 
 

41. Borton, A.J., Frederick, J.P., Datto, M.B., Wang, X.F., and Weinstein, R.S. (2001). The loss of Smad3 

results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast 

differentiation and apoptosis. J Bone Miner Res 16, 1754-1764. 

42. Claro da Silva, T., Hiller, C., Gai, Z., and Kullak-Ublick, G.A. (2016). Vitamin D3 transactivates the zinc 

and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 

163, 77-87. 

43. O'Seaghdha, C.M., Wu, H., Yang, Q., Kapur, K., Guessous, I., Zuber, A.M., Kottgen, A., Stoudmann, C., 

Teumer, A., Kutalik, Z., et al. (2013). Meta-analysis of genome-wide association studies identifies 

six new Loci for serum calcium concentrations. PLoS Genet 9, e1003796. 

44. Speliotes, E.K., Yerges-Armstrong, L.M., Wu, J., Hernaez, R., Kim, L.J., Palmer, C.D., Gudnason, V., 

Eiriksdottir, G., Garcia, M.E., Launer, L.J., et al. (2011). Genome-wide association analysis 

identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on 

metabolic traits. PLoS Genet 7, e1001324. 

45. Ousingsawat, J., Wanitchakool, P., Schreiber, R., Wuelling, M., Vortkamp, A., and Kunzelmann, K. 

(2015). Anoctamin-6 controls bone mineralization by activating the calcium transporter NCX1. J 

Biol Chem 290, 6270-6280. 

46. Shy, B.R., Wu, C.I., Khramtsova, G.F., Zhang, J.Y., Olopade, O.I., Goss, K.H., and Merrill, B.J. (2013). 

Regulation of Tcf7l1 DNA binding and protein stability as principal mechanisms of Wnt/beta-

catenin signaling. Cell Rep 4, 1-9. 

47. Tsutsumi, K., Matsuda, M., Kotani, M., Mizokami, A., Murakami, A., Takahashi, I., Terada, Y., 

Kanematsu, T., Fukami, K., Takenawa, T., et al. (2011). Involvement of PRIP, phospholipase C-

related, but catalytically inactive protein, in bone formation. J Biol Chem 286, 31032-31042. 

48. Li, Y., and Dudley, A.T. (2009). Noncanonical frizzled signaling regulates cell polarity of growth plate 

chondrocytes. Development 136, 1083-1092. 

49. Miclea, R.L., Karperien, M., Bosch, C.A., van der Horst, G., van der Valk, M.A., Kobayashi, T., 

Kronenberg, H.M., Rawadi, G., Akcakaya, P., Lowik, C.W., et al. (2009). Adenomatous polyposis 

coli-mediated control of beta-catenin is essential for both chondrogenic and osteogenic 

differentiation of skeletal precursors. BMC Dev Biol 9, 26. 

50. Wu, Q.T., Ma, Q.J., He, C.Y., Wang, C.X., Gao, S., Hou, X., and Ma, T.H. (2007). Reduced bone mineral 

density and bone metabolism in aquaporin-1 knockout mice. Chem Res Chinese U 23, 297-299. 



33 
 

51. Zhai, G.J., Teumer, A., Stolk, L., Perry, J.R.B., Vandenput, L., Coviello, A.D., Koster, A., Bell, J.T., 

Bhasin, S., Eriksson, J., et al. (2011). Eight Common Genetic Variants Associated with Serum 

DHEAS Levels Suggest a Key Role in Ageing Mechanisms. Plos Genetics 7. 

52. Moon, S.J., Lim, M.A., Park, J.S., Byun, J.K., Kim, S.M., Park, M.K., Kim, E.K., Moon, Y.M., Min, J.K., 

Ahn, S.M., et al. (2014). Dual-specificity phosphatase 5 attenuates autoimmune arthritis in mice 

via reciprocal regulation of the Th17/Treg cell balance and inhibition of osteoclastogenesis. 

Arthritis Rheumatol 66, 3083-3095. 

53. Hayer, S., Steiner, G., Gortz, B., Reiter, E., Tohidast-Akrad, M., Amling, M., Hoffmann, O., Redlich, K., 

Zwerina, J., Skriner, K., et al. (2005). CD44 is a determinant of inflammatory bone loss. J Exp Med 

201, 903-914. 

54. Krishnan, V., Bryant, H.U., and Macdougald, O.A. (2006). Regulation of bone mass by Wnt signaling. J 

Clin Invest 116, 1202-1209. 

55. Ryan, Z.C., Craig, T.A., Filoteo, A.G., Westendorf, J.J., Cartwright, E.J., Neyses, L., Strehler, E.E., and 

Kumar, R. (2015). Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, 

in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-

dihydroxyvitamin D3. Biochem Biophys Res Commun 467, 152-156. 

56. Tsukamoto, S., Mizuta, T., Fujimoto, M., Ohte, S., Osawa, K., Miyamoto, A., Yoneyama, K., Murata, E., 

Machiya, A., Jimi, E., et al. (2014). Smad9 is a new type of transcriptional regulator in bone 

morphogenetic protein signaling. Sci Rep 4, 7596. 

57. Miyaura, C., Toda, K., Inada, M., Ohshiba, T., Matsumoto, C., Okada, T., Ito, M., Shizuta, Y., and Ito, A. 

(2001). Sex- and age-related response to aromatase deficiency in bone. Biochem Biophys Res 

Commun 280, 1062-1068. 

58. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively 

regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. 

59. Tamamura, Y., Otani, T., Kanatani, N., Koyama, E., Kitagaki, J., Komori, T., Yamada, Y., Costantini, F., 

Wakisaka, S., Pacifici, M., et al. (2005). Developmental regulation of Wnt/beta-catenin signals is 

required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol 

Chem 280, 19185-19195. 

60. Soung do, Y., Kalinowski, J., Baniwal, S.K., Jacome-Galarza, C.E., Frenkel, B., Lorenzo, J., and Drissi, H. 

(2014). Runx1-mediated regulation of osteoclast differentiation and function. Mol Endocrinol 

28, 546-553. 



34 
 

61. Li, V., Raouf, A., Kitching, R., and Seth, A. (2004). Ets2 transcription factor inhibits mineralization and 

affects target gene expression during osteoblast maturation. In Vivo 18, 517-524. 

62. Tijchon, E., van Ingen Schenau, D., van Opzeeland, F., Tirone, F., Hoogerbrugge, P.M., Van Leeuwen, 

F.N., and Scheijen, B. (2015). Targeted Deletion of Btg1 and Btg2 Results in Homeotic 

Transformation of the Axial Skeleton. PLoS One 10, e0131481. 

63. Koscielny, G., Yaikhom, G., Iyer, V., Meehan, T.F., Morgan, H., Atienza-Herrero, J., Blake, A., Chen, 

C.K., Easty, R., Di Fenza, A., et al. (2014). The International Mouse Phenotyping Consortium Web 

Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids 

Res 42, D802-809. 

64. Ghebre, M.A., Hart, D.J., Hakim, A.J., Kato, B.S., Thompson, V., Arden, N.K., Spector, T.D., and Zhai, 

G.J. (2011). Association between DHEAS and Bone Loss in Postmenopausal Women: A 15-Year 

Longitudinal Population-Based Study. Calcified Tissue Int 89, 295-302. 

65. Gong, Y., Slee, R.B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A.M., Wang, H., Cundy, T., 

Glorieux, F.H., Lev, D., et al. (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual 

and eye development. Cell 107, 513-523. 

66. Heilmeier, U., Hackl, M., Skalicky, S., Weilner, S., Schroeder, F., Vierlinger, K., Patsch, J.M., Baum, T., 

Oberbauer, E., Lobach, I., et al. (2016). Serum miRNA Signatures Are Indicative of Skeletal 

Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence 

Osteogenic and Adipogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells 

In Vitro. J Bone Miner Res 31, 2173-2192. 

67. Sekiya, H., Murakami, T., Saito, A., Hino, S., Tsumagari, K., Ochiai, K., and Imaizumi, K. (2010). Effects 

of the bisphosphonate risedronate on osteopenia in OASIS-deficient mice. J Bone Miner Metab 

28, 384-394. 

68. Boudin, E., Yorgan, T., Fijalkowski, I., Sonntag, S., Steenackers, E., Hendrickx, G., Peeters, S., Mare, A., 

Vervaet, B., Verhulst, A., et al. (2017). The Lrp4 R1170Q homozygous knock-in mouse 

recapitulates the bone phenotype of sclerosteosis in humans. J Bone Miner Res. 

69. Albagha, O.M., Wani, S.E., Visconti, M.R., Alonso, N., Goodman, K., Brandi, M.L., Cundy, T., Chung, 

P.Y., Dargie, R., Devogelaer, J.P., et al. (2011). Genome-wide association identifies three new 

susceptibility loci for Paget's disease of bone. Nat Genet 43, 685-689. 

70. Courant, F., Aksglaede, L., Antignac, J.P., Monteau, F., Sorensen, K., Andersson, A.M., Skakkebaek, 

N.E., Juul, A., and Bizec, B.L. (2010). Assessment of circulating sex steroid levels in prepubertal 



35 
 

and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass 

spectrometry method. J Clin Endocrinol Metab 95, 82-92. 

71. Cao, J., Venton, L., Sakata, T., and Halloran, B.P. (2003). Expression of RANKL and OPG correlates 

with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18, 270-277. 

72. Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A.A., Lee, S.H., Robinson, M.R., Perry, J.R., Nolte, 

I.M., van Vliet-Ostaptchouk, J.V., et al. (2015). Genetic variance estimation with imputed 

variants finds negligible missing heritability for human height and body mass index. Nat Genet 

47, 1114-1120. 

  



36 
 

Figure Titles and Legends 

 
 
Figure 1. Manhattan plot of association statistics (-log10(P-values)) for TB-BMD overall meta-analysis. Each dot 
represents a SNP and the x-axis indicates its chromosomal position (built 37 NCBI). Red dots represent SNPs at 
GWS loci that are not within ±500Kb of leading SNPs in previous GWAS with different bone traits. Dashed 
horizontal red and yellow lines mark the GWS threshold (P<5x10

-8
) and suggestive threshold (P<1x10

-6
), 

respectively. Novel loci in the only-CEU analysis are not shown. 

 

Figure 2. Age dependence of the genetic variant effect in the meta-regression. The panels display leading SNPs 
from two loci exhibiting significant evidence for age influences. Heterogeneity P-values (Phet) are reported for the 
overall meta-analysis. In the left panels, each circle represents a study subgroup (i.e., study divided in age strata), 
with the circle size proportional to the inverse variance of the SNP main effect. In the right panels, forest plots 
display estimates obtained from each age-bin meta-analysis, with the symbol size proportional to the inverse 
variance of the SNP main effect.  

 

Figure 3. Genetic correlations between TB-BMD and other traits and diseases. Calculation was based on the 
summary statistics of the only-European meta-analysis (N=56,284) and estimated by LD score regression 
implemented in LDHub. The diagram only show traits whose correlation with TB-BMD was significant (P<0.05). 
 

Figure 4. Depict results for gene-set and cell/tissue enrichment analyses. Top panel: 25 Meta gene-sets were 
defined from similarity clustering of significantly enriched gene sets (FDR<5%). Each Meta gene-set was named 
after one of its member gene sets. The color of the Meta gene-sets represents the P-value of the member set. 
Interconnection line width represents the Pearson correlation ρ between the gene membership scores for each 
Meta gene-set (ρ < 0.3, no line; 0.3 ≤ ρ < 0.5,narrow width; 0.5 ≤ ρ < 0.7, medium width; ρ ≥ 0.7, thick width). 
Bottom panel: Bars represent the level of evidence for genes in the associated loci to be expressed in any of the 
209 Medical Subject Heading (MeSH) tissue and cell type annotations. Highlighted in orange are these cell/tissue 
types significantly (FDR<5%) enriched for the expression of the genes in the associated loci.  
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Table 1. Index SNPs of loci not previously associated with BMD. Variants associated with TB-BMD in the all-ages combined meta-analysis that map outside +/- 500 Kb of known 
index SNPs of genetic associations with different bone traits. Genomic coordinates are on build 37 of the human genome. Notes refer to annotation based on the closest gene.  
Associations with Lumbar Spine (LS) and Femoral Neck (FN)-BMD 

10
. Beta coefficients and allele frequencies (EAF) are reported for the A1 allele 

CHR BP rsnumber Locus A1 A2 EAF Effect P N annotation closest gene Notes LS-beta LS-P FN-beta FN-P 

1 8422676 rs2252865 1p36.23 T C 0.32 -0.033 4.72E-08 66075 intronic RERE Novel biology -0.019 0.043 -0.025 0.002 

1 110475971 rs7548588 1p13.3 T C 0.61 -0.037 9.29E-09 66240 intergenic CSF1  Osteoclast differentiation40 -0.030 0.001 -0.022 0.005 

1 220038825 rs185048405 1q41 T C 0.54 0.042 3.07E-09 66540 intronic  SLC30A10 Manganese transport42 -0.035 0.076 -0.003 0.878 

2 27741072 rs780096 2p23.3 C G 0.44 -0.031 4.58E-08 66578 intronic  GCKR Calcium regulation43, hepatic traits44 -0.014 0.129 -0.017 0.029 

2 40630678 rs10490046 2p22.1 A C 0.76 0.043 1.43E-10 65961 intronic SLC8A1  Bone mineralization45 0.015 0.162 0.021 0.025 

2 68962137 rs10048745 2p13.3 A G 0.25 -0.039 6.44E-09 66565 5'-UTR ARHGAP25 Novel biology -0.050 1.03E-06 -0.036 5.21E-05 

2 85484818 rs11904127 2p11.2 A G 0.55 -0.032 2.65E-08 66561 intronic TCF7L1 Factors in Wnt signaling46 -0.021 0.023 -0.015 0.054 

2 198874006 rs1595824 2q33.1 T C 0.47 0.034 2.65E-08 60171 intronic PLCL1 Negative regulation of bone formation47 0.022 0.201 0.052 2.20E-04 

2 202799604 rs2350085 2q33.2 T C 0.87 -0.064 3.80E-14 66412 intergenic FZD7 Factors in Wnt signaling48 -0.042 0.002 -0.044 1.96E-04 

2 234303405 rs838721 2q37.1 A G 0.44 -0.031 4.48E-09 65516 intronic DGKD Calcium regulation43 -0.016 0.070 -0.014 0.068 

5 112221869 rs818427 5q22.2 T C 0.31 0.034 2.37E-08 66592 intronic APC Bone metabolism49 0.004 0.645 0.008 0.327 

5 122847622 rs11745493 5q23.2 A G 0.75 0.044 7.75E-12 66597 promoter CSNK1G3 Novel Biology 0.010 0.326 0.025 0.005 

7 27989403 rs757138 7p15.1 T G 0.69 -0.035 3.33E-08 66043 intronic JAZF1 Novel Biology -0.016 0.126 -0.025 0.004 

7 30957702 rs28362721 7p14.3 T C 0.18 -0.059 6.71E-14 66274 intronic AQP1  Bone metabolism50 -0.037 0.002 -0.049 1.39E-06 

7 50901491 rs1548607 7p12.1 A G 0.69 0.036 4.18E-08 66564 intergenic GRB10 Novel biology 0.034 5.59E-04 0.005 0.517 

7 99130834 rs34670419 7q22.1 T G 0.04 -0.088 1.09E-08 66336 3'-UTR ZKSCAN5 DHEAS and aging mechanisms51 -0.127 9.28E-08 -0.080 8.19E-05 

10 112245400 rs73349318 10q25.2 A T 0.87 -0.047 2.68E-08 66341 intronic DUSP5  Osteoclast differentiation52 -0.042 0.001 -0.051 8.76E-06 

10 124015986 rs10788264 10q26.13 A G 0.48 -0.034 2.61E-09 66565 intergenic TACC2 Novel Biology -0.030 9.64E-04 -0.029 1.29E-04 

11 242859 rs55781332 11p15.5 A G 0.78 -0.055 8.07E-16 66198 intronic PSMD13 Novel Biology -0.046 1.76E-05 -0.026 0.005 

11 35083633 rs2553773 11p13 C G 0.41 -0.037 1.49E-10 66619 intergenic CD44 Osteoclast activity53 -0.015 0.101 -0.015 0.054 

11 35981346 rs113964474* 11p.13* A G 0.03 0.485 1.41E-08 6748 intronic LDLRAD3 Novel Biology . . . . 

11 69299537 rs4980659 11q13.3 C G 0.52 0.033 1.16E-08 66537 intergenic CCND1 Target of Wnt signalling54 0.039 1.58E-05 0.023 0.003 

11 121913230 rs725670 11q24.1 A G 0.38 -0.032 3.61E-08 66565 intergenic BLID Novel Biology -0.020 0.028 -0.011 0.172 

12 90334829 rs10777212 12q21.33 T G 0.35 0.045 5.05E-14 66619 intergenic ATP2B1 Calcium absorption55 0.028 0.003 0.021 0.010 

12 116555786 rs73200209** 12q24.21 A T 0.80 0.045 2.51E-08 51240 intronic MED13L Novel biology 0.030 0.167 0.036 0.044 

13 37487021 rs556429 13q13.3 A C 0.23 0.039 1.46E-08 66504 intronic  SMAD9 Osteoblast differentiation56 0.023 0.027 0.013 0.135 

15 38340874 rs12442242 15q14 A  G 0.85 -0.051 4.94E-10 66403 intergenic TMCO5A Novel Biology -0.046 3.03E-04 -0.047 2.26E-05 

15 51537806 rs2414098 15q21.2 T C 0.39 -0.033 1.99E-08 66562 intronic CYP19A1 Estrogen byosynthesis57 -0.034 0.007 -0.038 0.001 

15 67420680 rs1545161 15q22.33 A G 0.56 0.041 1.06E-12 66004 intronic SMAD3 Osteoblast differentiation41 0.034 1.27E-04 0.035 5.78E-06 

17 17804725 rs8070128 17p11.2 T C 0.58 -0.039 1.98E-11 66625 intronic  TOM1L2 Novel biology -0.033 4.80E-04 -0.015 0.052 

17 63771079 rs9972944 17q24.1 A G 0.41 0.036 6.87E-10 66595 intronic CEP112 Novel Biology 0.028 0.003 0.004 0.576 

19 31654615 rs6510186*** 19q12 T C 0.26 0.068 3.11E-08 18782 intergenic TSHZ3 Novel Biology 0.004 0.713 0.006 0.492 
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20 39103882 rs6029130 20q12 T C 0.30 0.035 3.50E-08 66497 intergenic MAFB Osteoclast differentiation58 0.027 0.007 0.015 0.083 

21 28773868 rs1452102 21q21.3 T G 0.59 -0.035 1.74E-09 66489 intergenic ADAMTS5 Endochondral Ossification59 -0.029 0.001 -0.015 0.056 

21 36970350 rs9976876 21q22.12 T G 0.45 -0.038 8.01E-11 66514 intronic RUNX1 Osteoclast differentiation60 -0.019 0.031 -0.016 0.041 

21 40350744 rs11910328 21q22.2 A G 0.84 -0.043 2.99E-08 66298 intergenic ETS2 Osteoblast maturation61 -0.028 0.020 -0.028 0.007 

 
* Monomorphic in European cohorts.  ** Reported statistics from the in the meta-analysis of European populations. *** Reported statistics from the meta-analysis in the 30-45 
age-strata. 
 

 


