1,835 research outputs found

    Nanobiology of the Cardiac Myofilament

    Get PDF

    An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry

    Full text link
    The separation between the two reactive thiols SH1 (Cys-704) and SH2 (Cys-694) and that between SH1 and the active site of myosin subfragment-1 were further investigated by Forster energy transfer techniques. The SH1-SH2 distance was determined with the probe 5[[2-[(iodoacetyl)amino]ethyl]amino]naphthalene-1-sulfonic acid (AEDANS) attached to SH1 as the energy donor and 5-(iodoacetamido)fluorescein (IAF) attached to SH2 as energy acceptor. The results derived from measurements of donor lifetimes yielded a donor-acceptor separation in the range 26-52A, with the distance R(2/3) based on rapid and isotropic probe motions being 40 A. These parameters were not sensitive to added MgADP, in agreement with previous results obtained by using the steady-state method. The SH1-SH2 distance was also determined with AEDANS attached to SH1 and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) attached to SH2. The range in R for the AEDANS/DDPM pair was 12-36 A, with R(2/3) equal to 27 A. The transfer efficiency between these two probes increased by an average of 38% upon addition of MgADP. These results are in agreement with those previously reported (Dalbey, R.E.; Weiel, J.; Yount, R.G. (1983) Biochemistry 22, 4696-4706), but the uncertainty in choosing an appropriate value of the orientation factor to describe the AEDANS-DDPM separation does not allow a unique interpretation of the observed increase in energy transfer because it could reflect either an increase in the average orientation factor or a decrease in the donor-acceptor separation. Nevertheless, the results are consistent with the notion that nucleotide binding induces structural perturbations that can be sensed by SH1 and SH2. The distance between SH1 and the ATPase site was determined with AEDANS linked to SH1 and the nucleotide analogue 2'(3')-O-(2,4,6,-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) noncovalently bound to the active site as energy acceptor. The bound TNP-ADP was highly immobilized, with a depolarization factor approaching unity. The sepration between AEDANS at SH1 and TNP-ADP at the active site was in the range 15-44 A. The actual minimal separation between SH1 and the active site is probably less than 15 A, which suggests that direct interaction between the two sites cannot be ruled out from energy transfer results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25503/1/0000044.pd

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Regulatory Adaptation of Staphylococcus aureus during Nasal Colonization of Humans

    Get PDF
    The nasopharynx is the main ecological niche of the human pathogen Staphylococcus aureus. Although colonization of the nares is asymptomatic, nasal carriage is a known risk factor for endogenous staphylococcal infection. We quantified S. aureus mRNA levels in nose swabs of persistent carriers to gain insight into the regulatory adaptation of the bacterium to the nasal environment. We could elucidate a general response of the pathogen to the surrounding milieu independent of the strain background or the human host. Colonizing bacteria preferentially express molecules necessary for tissue adherence or immune-evasion whereas toxins are down regulated. From the analysis of regulatory loci we found evidence for a predominate role of the essential two-component system WalKR of S. aureus. The results suggest that during persistent colonization the bacteria are metabolically active with a high cell surface turnover. The increased understanding of bacterial factors that maintain the colonization state can open new therapeutic options to control nasal carriage and subsequent infections

    Bridging The Age Gap: observational cohort study of effects of chemotherapy and trastuzumab on recurrence, survival and quality of life in older women with early breast cancer.

    Get PDF
    BACKGROUND: Chemotherapy improves outcomes for high risk early breast cancer (EBC) patients but is infrequently offered to older individuals. This study determined if there are fit older patients with high-risk disease who may benefit from chemotherapy. METHODS: A multicentre, prospective, observational study was performed to determine chemotherapy (±trastuzumab) usage and survival and quality-of-life outcomes in EBC patients aged ≥70 years. Propensity score-matching adjusted for variation in baseline age, fitness and tumour stage. RESULTS: Three thousands four hundred sixteen women were recruited from 56 UK centres between 2013 and 2018. Two thousands eight hundred eleven (82%) had surgery. 1520/2811 (54%) had high-risk EBC and 2059/2811 (73%) were fit. Chemotherapy was given to 306/1100 (27.8%) fit patients with high-risk EBC. Unmatched comparison of chemotherapy versus no chemotherapy demonstrated reduced metastatic recurrence risk in high-risk patients(hazard ratio [HR] 0.36 [95% CI 0.19-0.68]) and in 541 age, stage and fitness-matched patients(adjusted HR 0.43 [95% CI 0.20-0.92]) but no benefit to overall survival (OS) or breast cancer-specific survival (BCSS) in either group. Chemotherapy improved survival in women with oestrogen receptor (ER)-negative cancer (OS: HR 0.20 [95% CI 0.08-0.49];BCSS: HR 0.12 [95% CI 0.03-0.44]).Transient negative quality-of-life impacts were observed. CONCLUSIONS: Chemotherapy was associated with reduced risk of metastatic recurrence, but survival benefits were only seen in patients with ER-negative cancer. Quality-of-life impacts were significant but transient. TRIAL REGISTRATION: ISRCTN 46099296

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion

    Get PDF
    Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs) by the multiple peptide resistance factor (MprF) protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG) production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help to employ MprF as a target for new anti-virulence drugs

    Subinhibitory Concentrations of Perilla Oil Affect the Expression of Secreted Virulence Factor Genes in Staphylococcus aureus

    Get PDF
    BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins
    corecore