17 research outputs found

    On the video drama "Serum City".

    No full text
    The film depicts a world where eating has been made illegal and follows the story of lead character Samuel Wong as he pursues his personal happiness in a highly regulated society.Bachelor of Communication Studie

    Posterior scleral birefringence measured by triple-input polarization-sensitive imaging as a biomarker of myopia progression

    No full text
    In myopic eyes, pathological remodelling of collagen in the posterior sclera has mostly been observed ex vivo. Here we report the development of triple-input polarization-sensitive optical coherence tomography (OCT) for measuring posterior scleral birefringence. In guinea pigs and humans, the technique offers superior imaging sensitivities and accuracies than dual-input polarization-sensitive OCT. In 8-week-long studies with young guinea pigs, scleral birefringence was positively correlated with spherical equivalent refractive errors and predicted the onset of myopia. In a cross-sectional study involving adult individuals, scleral birefringence was associated with myopia status and negatively correlated with refractive errors. Triple-input polarization-sensitive OCT may help establish posterior scleral birefringence as a non-invasive biomarker for assessing the progression of myopia.Agency for Science, Technology and Research (A*STAR)Nanyang Technological UniversityNational Medical Research Council (NMRC)National Research Foundation (NRF)Published versionThis work was funded by grants from the Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Grant (I1901E0038, L.S., Q.V.H., A.W.C., R.P.N., V.A.B., M.A. and S.-M.S.) and Johnson & Johnson Vision. We also acknowledge the support of the National Medical Research Council (CG/C010A/2017_SERI, L.S.; OFLCG/004c/2018-00, L.S.; MOH-000249-00, J. Chua; MOH-000647-00, L.S.; MOH-001001-00, L.S.; MOH-001015-00, L.S.; MOH-000500-00, L.S.; MOH-000707-00, L.S.; MOH-001072-06, L.S.; NMRC/CSIRG/MOH-000531/2021, Q.V.H.); the National Research Foundation Singapore (NRF2019-THE002-0006, L.S. and NRF-CRP24-2020-0001, L.S.), A*STAR (A20H4b0141, L.S., J. Chua), the Singapore Eye Research Institute & Nanyang Technological University (SERI-NTU Advanced Ocular Engineering (STANCE) Program, L.S.), the SERI-Lee Foundation (LF1019-1, J. Chua), the US National Institutes of Health (P41EB-015903, M.V. and R01 EY023966, I.A.S.), the EU (H2020-MSCA-IF-2019 program 894325, M.L.) and the Singapore Eye Research Institute & National University of Singapore ASPIRE Program (NUHSRO/2022/038/Startup/08, R.P.N.)

    Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species

    No full text
    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference Hot pepper(Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper(Mexican landrace of Capsicum annuum cv. CM334) at 186.6×coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000005113/1SEQ:1PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000005113ADJUST_YN:NEMP_ID:A077085DEPT_CD:517CITE_RATE:35.209FILENAME:pepper-final.pdfDEPT_NM:식물생산과학부EMAIL:[email protected]_YN:YCONFIRM:

    Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species

    No full text

    Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3): analysis of individual data from 258 cancer registries in 61 countries

    Get PDF
    Background: Leukaemias comprise a heterogenous group of haematological malignancies. In CONCORD-3, we analysed data for children (aged 0–14 years) and adults (aged 15–99 years) diagnosed with a haematological malignancy during 2000–14 in 61 countries. Here, we aimed to examine worldwide trends in survival from leukaemia, by age and morphology, in young patients (aged 0–24 years). Methods: We analysed data from 258 population-based cancer registries in 61 countries participating in CONCORD-3 that submitted data on patients diagnosed with leukaemia. We grouped patients by age as children (0–14 years), adolescents (15–19 years), and young adults (20–24 years). We categorised leukaemia subtypes according to the International Classification of Childhood Cancer (ICCC-3), updated with International Classification of Diseases for Oncology, third edition (ICD-O-3) codes. We estimated 5-year net survival by age and morphology, with 95% CIs, using the non-parametric Pohar-Perme estimator. To control for background mortality, we used life tables by country or region, single year of age, single calendar year and sex, and, where possible, by race or ethnicity. All-age survival estimates were standardised to the marginal distribution of young people with leukaemia included in the analysis. Findings: 164 563 young people were included in this analysis: 121 328 (73·7%) children, 22 963 (14·0%) adolescents, and 20 272 (12·3%) young adults. In 2010–14, the most common subtypes were lymphoid leukaemia (28 205 [68·2%] patients) and acute myeloid leukaemia (7863 [19·0%] patients). Age-standardised 5-year net survival in children, adolescents, and young adults for all leukaemias combined during 2010–14 varied widely, ranging from 46% in Mexico to more than 85% in Canada, Cyprus, Belgium, Denmark, Finland, and Australia. Individuals with lymphoid leukaemia had better age-standardised survival (from 43% in Ecuador to ≥80% in parts of Europe, North America, Oceania, and Asia) than those with acute myeloid leukaemia (from 32% in Peru to ≥70% in most high-income countries in Europe, North America, and Oceania). Throughout 2000–14, survival from all leukaemias combined remained consistently higher for children than adolescents and young adults, and minimal improvement was seen for adolescents and young adults in most countries. Interpretation: This study offers the first worldwide picture of population-based survival from leukaemia in children, adolescents, and young adults. Adolescents and young adults diagnosed with leukaemia continue to have lower survival than children. Trends in survival from leukaemia for adolescents and young adults are important indicators of the quality of cancer management in this age group

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore