26 research outputs found

    Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector

    Get PDF
    The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t -channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb−1 of proton-proton collision data at √s =7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f 1 of decays containing transversely polarised W bosons is measured to be 0.37 ± 0.07 (stat.⊕syst.). The phase δ − between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be −0.014π ± 0.036π (stat.⊕syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g R and V L, yielding Re[g R /V L] ∈ [−0.36, 0.10] and Im[g R /V L] ∈ [−0.17, 0.23] with a correlation of 0.11. The results are in good agreement with the predictions of the Standard Model

    Measurement of the tt̄W and tt̄Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√ = 8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−¹ collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt̄W and tt̄Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯Wtt¯W (tt̄Z) production. The measured cross sections are σtt̄W = 369 + 100−91 fb and σtt̄Z = 176 + 58−52 fb. The background-only hypothesis with neither tt̄W nor tt̄Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt̄W and tt̄Z processes

    Searches for Higgs boson pair production in the hh→bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector

    Get PDF
    Searches for both resonant and nonresonant Higgs boson pair production are performed in the hh→bbττ, γγWW∗ final states using 20.3  fb−1 of pp collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence-level upper limits on the production cross sections are set. These results are then combined with the published results of the hh→γγbb, bbbb analyses. An upper limit of 0.69 (0.47) pb on the nonresonant hh production is observed (expected), corresponding to 70 (48) times the SM gg→hh cross section. For production via narrow resonances, cross-section limits of hh production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model

    Determination of the ratio of b-quark fragmentation fractions fs/fd in pp collisions at √s = 7 TeV with the ATLAS Detector

    Get PDF
    With an integrated luminosity of 2.47  fb−1 recorded by the ATLAS experiment at the LHC, the exclusive decays B 0s→J/ψϕ and B0d→J/ψK*0 of B mesons produced in pp collisions at √s=7  TeV are used to determine the ratio of fragmentation fractions fs/fd. From the observed B0s→J/ψϕ and B0d→J/ψK*0 yields, the quantity (fs/fd)[B(B0s→J/ψϕ)/B(B 0d→J/ψK*0)] is measured to be 0.199±0.004(stat)±0.008(syst). Using a recent theory prediction for [B(B0s→J/ψϕ)/B(B0d→J/ψK*0)] yields (fs/fd)=0.240±0.004(stat)±0.010(syst)±0.017(th). This result is based on a new approach that provides a significant improvement of the world average

    Search for the electroweak production of supersymmetric particles in sqrt(s)=8  TeV pp collisions with the ATLAS detector

    Get PDF
    The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vectorboson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb−1 of proton-proton collision data at √s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models

    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Get PDF
    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied

    Charged-particle distributions in pp interactions at √s = 8 TeV measured with the ATLAS detector

    Get PDF
    This paper presents measurements of distributions of charged particles which are produced in proton– proton collisions at a centre-of-mass energy of √s = 8 TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of 160 µb−1 was used. A minimumbias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and chargedparticle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state

    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Get PDF
    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β∗ are studied

    La Respiration de la Chauve-Souris pendant l'Hibernation

    Get PDF
    L'auteur examine sur l'influence que la température ambiante excerce sur l'intensité de la respiration de la Chauve-Souris pendant l'hibernation. Les resultats sont ainsi qu'il suit: 1) Pendant la période d'hibernation, la quantité d'oxygène absorbé et d'acide carbonique exhalé et le chiffre du quotient respiratoire, chez la Chauve-Souris, augmente et diminue avec la température ambiante. 2) En jugeant au point du vue de la respiration, l'état léthargique est très profond et stable à la température basse (au-dessous de 10°C). Mais, au dessus de 10°C, le sommeil est variable et superficiel, et l'animal reveille entre 15-20°C. L'échange gazeux est énormement augmente, pendant le reveil d'hibernation, avec aussi en croissant le quotient respiratoire

    Observation of Long-Range Elliptic Azimuthal Anisotropies in root s=13 and 2.76 TeV pp Collisions with the ATLAS Detector

    Get PDF
    ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Δϕ, and pseudorapidity, Δη, in sqrt[s]=13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval |η|<2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Δϕ∼0 that extends over a wide range of Δη, which has been referred to as the "ridge." Per-trigger-particle yields, Y(Δϕ), are measured over 2<|Δη|<5. For both collision energies, the Y(Δϕ) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by cos(2Δϕ). The fitted Fourier coefficient, v_{2,2}, exhibits factorization, suggesting that the ridge results from per-event cos(2ϕ) modulation of the single-particle distribution with Fourier coefficients v_{2}. The v_{2} values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p_{T} dependence similar to that measured in p+Pb and Pb+Pb collisions. The v_{2} values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p+Pb collisions, and that the dynamics responsible for the ridge has no strong sqrt[s] dependence
    corecore