12 research outputs found

    Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium

    Get PDF
    Admixture mapping based on recently admixed populations is a powerful method to detect disease variants with substantial allele frequency differences in ancestral populations. We performed admixture mapping analysis for systolic blood pressure (SBP) and diastolic blood pressure (DBP), followed by trait-marker association analysis, in 6303 unrelated African-American participants of the Candidate Gene Association Resource (CARe) consortium. We identified five genomic regions (P< 0.001) harboring genetic variants contributing to inter-individual BP variation. In follow-up association analyses, correcting for all tests performed in this study, three loci were significantly associated with SBP and one significantly associated with DBP (P< 10−5). Further analyses suggested that six independent single-nucleotide polymorphisms (SNPs) contributed to the phenotypic variation observed in the admixture mapping analysis. These six SNPs were examined for replication in multiple, large, independent studies of African-Americans [Women's Health Initiative (WHI), Maywood, Genetic Epidemiology Network of Arteriopathy (GENOA) and Howard University Family Study (HUFS)] as well as one native African sample (Nigerian study), with a total replication sample size of 11 882. Meta-analysis of the replication set identified a novel variant (rs7726475) on chromosome 5 between the SUB1 and NPR3 genes, as being associated with SBP and DBP (P< 0.0015 for both); in meta-analyses combining the CARe samples with the replication data, we observed P-values of 4.45 × 10−7 for SBP and 7.52 × 10−7 for DBP for rs7726475 that were significant after accounting for all the tests performed. Our study highlights that admixture mapping analysis can help identify genetic variants missed by genome-wide association studies because of drastically reduced number of tests in the whole genome

    Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

    Get PDF
    Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p &lt; 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach

    Evaluating genomic polygenic risk scores for childhood acute lymphoblastic leukemia in Latinos

    No full text
    Summary: The utility of polygenic risk score (PRS) models has not been comprehensively evaluated for childhood acute lymphoblastic leukemia (ALL), the most common type of cancer in children. Previous PRS models for ALL were based on significant loci observed in genome-wide association studies (GWASs), even though genomic PRS models have been shown to improve prediction performance for a number of complex diseases. In the United States, Latino (LAT) children have the highest risk of ALL, but the transferability of PRS models to LAT children has not been studied. In this study, we constructed and evaluated genomic PRS models based on either non-Latino White (NLW) GWAS or a multi-ancestry GWAS. We found that the best PRS models performed similarly between held-out NLW and LAT samples (PseudoR2 = 0.086 ± 0.023 in NLW vs. 0.060 ± 0.020 in LAT), and can be improved for LAT if we performed GWAS in LAT-only (PseudoR2 = 0.116 ± 0.026) or multi-ancestry samples (PseudoR2 = 0.131 ± 0.025). However, the best genomic models currently do not have better prediction accuracy than a conventional model using all known ALL-associated loci in the literature (PseudoR2 = 0.166 ± 0.025), which includes loci from GWAS populations that we could not access to train genomic PRS models. Our results suggest that larger and more inclusive GWASs may be needed for genomic PRS to be useful for ALL. Moreover, the comparable performance between populations may suggest a more oligogenic architecture for ALL, where some large effect loci may be shared between populations. Future PRS models that move away from the infinite causal loci assumption may further improve PRS for ALL

    Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France

    Get PDF
    A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754–1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (2.5×) with coding sequences enriched at a higher 7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.This work is supported by FEDER and Spanish Government grants BFU2012-38236 and the Spanish Multiple Sclerosis Netowrk (REEM) of the Instituto de Salud Carlos III (RD12/0032/0011) to A.N., BFU2011-28549 and ERC Starting Grant (260372) to T.M.-B. and BFU2012-34157 to C.L.-F. and S.C., and a predoctoral fellowship from the Basque Government (DEUI) to I.

    Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France

    No full text
    A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754–1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (2.5×) with coding sequences enriched at a higher 7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.This work is supported by FEDER and Spanish Government grants BFU2012-38236 and the Spanish Multiple Sclerosis Netowrk (REEM) of the Instituto de Salud Carlos III (RD12/0032/0011) to A.N., BFU2011-28549 and ERC Starting Grant (260372) to T.M.-B. and BFU2012-34157 to C.L.-F. and S.C., and a predoctoral fellowship from the Basque Government (DEUI) to I.

    Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia

    Get PDF
    The island of Sardinia has been of particular interest to geneticists for decades. The current model for Sardinia’s genetic history describes the island as harboring a founder population that was established largely from the Neolithic peoples of southern Europe and remained isolated from later Bronze Age expansions on the mainland. To evaluate this model, we generate genome-wide ancient DNA data for 70 individuals from 21 Sardinian archaeological sites spanning the Middle Neolithic through the Medieval period. The earliest individuals show a strong affinity to western Mediterranean Neolithic populations, followed by an extended period of genetic continuity on the island through the Nuragic period (second millennium BCE). Beginning with individuals from Phoenician/Punic sites (first millennium BCE), we observe spatially-varying signals of admixture with sources principally from the eastern and northern Mediterranean. Overall, our analysis sheds light on the genetic history of Sardinia, revealing how relationships to mainland populations shifted over time

    Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium

    Get PDF
    Admixture mapping based on recently admixed populations is a powerful method to detect disease variants with substantial allele frequency differences in ancestral populations. We performed admixture mapping analysis for systolic blood pressure (SBP) and diastolic blood pressure (DBP), followed by trait-marker association analysis, in 6303 unrelated African-American participants of the Candidate Gene Association Resource (CARe) consortium. We identified five genomic regions (P< 0.001) harboring genetic variants contributing to inter-individual BP variation. In follow-up association analyses, correcting for all tests performed in this study, three loci were significantly associated with SBP and one significantly associated with DBP (P< 10−5). Further analyses suggested that six independent single-nucleotide polymorphisms (SNPs) contributed to the phenotypic variation observed in the admixture mapping analysis. These six SNPs were examined for replication in multiple, large, independent studies of African-Americans [Women's Health Initiative (WHI), Maywood, Genetic Epidemiology Network of Arteriopathy (GENOA) and Howard University Family Study (HUFS)] as well as one native African sample (Nigerian study), with a total replication sample size of 11 882. Meta-analysis of the replication set identified a novel variant (rs7726475) on chromosome 5 between the SUB1 and NPR3 genes, as being associated with SBP and DBP (P< 0.0015 for both); in meta-analyses combining the CARe samples with the replication data, we observed P-values of 4.45 × 10−7 for SBP and 7.52 × 10−7 for DBP for rs7726475 that were significant after accounting for all the tests performed. Our study highlights that admixture mapping analysis can help identify genetic variants missed by genome-wide association studies because of drastically reduced number of tests in the whole genome

    A Rare Germline HOXB13 Variant Contributes to Risk of Prostate Cancer in Men of African Ancestry

    Get PDF
    International audienceA rare African ancestry-specific germline deletion variant in HOXB13 (X285K, rs77179853) was recently reported in Martinican men with early-onset prostate cancer. Given the role of HOXB13 germline variation in prostate cancer, we investigated the association between HOXB13 X285K and prostate cancer risk in a large sample of 22 361 African ancestry men, including 11 688 prostate cancer cases. The risk allele was present only in men of West African ancestry, with an allele frequency in men that ranged from 0.40% in Ghana and 0.31% in Nigeria to 0% in Uganda and South Africa, with a range of frequencies in men with admixed African ancestry from North America and Europe (0-0.26%). HOXB13 X285K was associated with 2.4-fold increased odds of prostate cancer (95% confidence interval [CI] = 1.5-3.9, p = 2 × 10-4), with greater risk observed for more aggressive and advanced disease (Gleason ≥8: odds ratio [OR] = 4.7, 95% CI = 2.3-9.5, p = 2 × 10-5; stage T3/T4: OR = 4.5, 95% CI = 2.0-10.0, p = 2 × 10-4; metastatic disease: OR = 5.1, 95% CI = 1.9-13.7, p = 0.001). We estimated that the allele arose in West Africa 1500-4600 yr ago. Further analysis is needed to understand how the HOXB13 X285K variant impacts the HOXB13 protein and function in the prostate. Understanding who carries this mutation may inform prostate cancer screening in men of West African ancestry. PATIENT SUMMARY: A rare African ancestry-specific germline deletion in HOXB13, found only in men of West African ancestry, was reported to be associated with an increased risk of overall and advanced prostate cancer. Understanding who carries this mutation may help inform screening for prostate cancer in men of West African ancestry
    corecore