1,048 research outputs found
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
The weak nucleon axial-vector form factor for quasi-elastic interactions is
determined using neutrino interaction data from the K2K Scintillating Fiber
detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of
which half are charged-current quasi-elastic interactions nu-mu n to mu- p
occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for
oxygen and assume the form factor is approximately a dipole with one parameter,
the axial vector mass M_A, and fit to the shape of the distribution of the
square of the momentum transfer from the nucleon to the nucleus. Our best fit
result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated
vector form factors from recent electron scattering experiments and a
discussion of the effects of the nucleon momentum on the shape of the fitted
distributions.Comment: 14 pages, 10 figures, 6 table
Evidence for the Ξ·_b(1S) Meson in Radiative Ξ₯(2S) Decay
We have performed a search for the Ξ·_b(1S) meson in the radiative decay of the Ξ₯(2S) resonance using a sample of 91.6 Γ 10^6 Ξ₯(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_Ξ³ = 609.3^(+4.6)_(-4.5)(stat)Β±1.9(syst) MeV, corresponding to an Ξ·_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) Β± 2.0(syst) MeV/c^2. The branching fraction for the decay Ξ₯(2S) β Ξ³Ξ·_b(1S) is determined to be [3.9 Β± 1.1(stat)^(+1.1)_(-0.9)(syst)] Γ 10^(-4). We find the ratio of branching fractions B[Ξ₯(2S) β Ξ³Ξ·_b(1S)]/B[Ξ₯(3S) β Ξ³Ξ·_b(1S)]= 0.82 Β± 0.24(stat)^(+0.20)_(-0.19)(syst)
Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+
We report a search for the decays , , in a sample of 232
million decays to \BBb ~pairs collected with the \babar detector
at the PEP-II asymmetric-energy storage ring. We find no significant
signal and set upper bounds for the branching fractions: and at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R
Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics
With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the
BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays
to ppbar. We measure a branching fraction Br(B+ --> p pbar
K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and
the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B
decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the
mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ -->
Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays
We present measurements of the branching fractions for the three-body decays
B0 -> D(*)-/+ K0 pi^+/-B0 -> D(*)-/+ K*+/- using
a sample of approximately 88 million BBbar pairs collected by the BABAR
detector at the PEP-II asymmetric energy storage ring.
We measure:
B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4}
B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4}
From these measurements we determine the fractions of resonant events to be :
f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) =
0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass
energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with
the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum
we have obtained the products of branching fractions for the omega and phi
mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and
B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the
e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range
1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events
have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18
+/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
Measurement of D^0-DΜ ^0 Mixing from a Time-Dependent Amplitude Analysis of D^0βK^+Ο^-Ο^0 Decays
We present evidence of D^0-DΜ
^0 mixing using a time-dependent amplitude analysis of the decay D^0βK^+Ο^-Ο^0 in a data sample of 384ββfb^(-1) collected with the BABAR detector at the PEP-II e^+e^- collider at the Stanford Linear Accelerator Center. Assuming CP conservation, we measure the mixing parameters x_(KΟΟ)^(0β²)=[2.61_(-0.68)^(+0.57)(stat)Β±0.39(syst)]%, y_(KΟΟ)^(0β²)=[-0.06_(-0.64)^(+0.55)(stat)Β±0.34(syst)]%. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. We find no evidence of CP violation in mixing
- β¦