102 research outputs found

    Expression and role of Elovl4 elongases in biosynthesis of very long-chain fatty acids during zebrafish Danio rerio early embryonic development

    Get PDF
    Elovl4 is a fatty acyl elongase that participates in the biosynthesis of very long-chain fatty acids (≥C24), which are relatively abundant in skin (saturated chains), or retina, brain and testes (polyunsaturated chains) of mammals. In the present study we characterised two Elovl4 proteins, Elovl4a and Elovl4b, from zebrafish Danio rerio, and investigated their expression patterns during embryonic development. Heterologous expression in baker’s yeast showed that both zebrafish Elovl4 proteins efficiently elongated saturated fatty acids up to C36, with 26:0 appearing the preferred substrate as reported for human ELOVL4. Interestingly, activity for the elongation of PUFA substrates was only shown by Elovl4b, which effectively converted eicosapentaenoic (20:5n-3) and arachidonic (20:4n-6) acids to elongated polyenoic products up to C36. Furthermore, zebrafish Elovl4b may be involved in the biosynthesis of docosahexaenoic acid (22:6n-3, DHA) as it had the capacity to elongate 22:5n-3 to 24:5n-3 which can be subsequently desaturated and chain shortened to DHA in peroxisomes. The distinct functional roles of zebrafish Elovl4 proteins were also reflected in their spatial-temporal expression patterns during ontogeny. Analyses by whole-mount in situ hybridisation in zebrafish embryos showed that elovl4a was expressed in neuronal tissues (wide-spread distribution in the head area), with elovl4b specifically expressed in epiphysis (pineal gland) and photoreceptor cells in the retina. Similarly, tissue distribution in adults revealed that elovl4a transcripts were found in most tissues analysed, whereas elovl4b expression was essentially restricted to eye and gonads. Overall, the results suggest that zebrafish elovl4b resembles other mammalian orthologues in terms of function and expression patterns, whereas elovl4a may represent an alternative elongase not previously described in vertebrates

    Thyroid hormones regulate zebrafish melanogenesis in a gender-specific manner

    Get PDF
    12 páginas, 5 figuras.-- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedZebrafish embryos are treated with anti-thyroidal compounds, such as phenylthiourea, to inhibit melanogenesis. However, the mechanism whereby the thyroidal system controls melanin synthesis has not been assessed in detail. In this work, we tested the effect of the administration of diets supplemented with T3 (500μg/g food) on the pigment pattern of adult zebrafish. Oral T3 induced a pronounced skin paling in both adult female and male zebrafish that was reversible upon cessation of treatment. The number of visible melanophores was significantly reduced in treated fish. Accordingly, treatment down-regulated expression of tyrosinase-related protein 1 in both sexes. We also found sexually dimorphic regulation of some melanogenic genes, such as Dct/Tyrp2 that was dramatically up-regulated in females after T3 treatment. Thus, we demonstrated that melanogenesis is reversibly inhibited by thyroid hormones in adult zebrafish and make the discovery of gender-specific differences in the response of melanogenic gene expression. Thus, fish gender is now shown to be an important variable that should be controlled in future studies of fish melanogenesisMinisterio de Economia y Competitividad grant numbers AGL2013-46448-C3-3-R and AGL2014-52473R, Biotechnology and Biological Sciences Research Council (BBSRC) grant number BB/L00769X/1, and Medical Research Council (MRC) grant number MR/J001457/1Peer reviewe

    Molecular, Cellular and Physiological Evidences for the Anorexigenic Actions of Nesfatin-1 in Goldfish

    Get PDF
    Nesfatin-1 is a recently discovered anorexigen encoded in the precursor peptide, nucleobindin-2 (NUCB2) in mammals. To date, nesfatin-1 has not been described in any non-mammalian species, although some information is available in the sequenced genomes of several species. Our objective was to characterize nesfatin-1 in fish.In the present study, we employed molecular, immunohistochemical, and physiological studies to characterize the structure, distribution, and appetite regulatory effects of nesfatin-1 in a non-mammalian vertebrate. A very high conservation in NUCB2 sequences, especially in the nesfatin-1 region was found in lower vertebrates. Abundant expression of NUCB2 mRNA was detected in several tissues including the brain and liver of goldfish. Nesfatin-1-like immunoreactive cells are present in the feeding regulatory nucleus of the hypothalamus and in the gastrointestinal tract of goldfish. Approximately 6-fold increase in NUCB2 mRNA levels was found in the liver after 7-day food-deprivation, and a similar increase was also found after short-term fasting. This points toward a possible liver specific role for NUCB2 in the control of metabolism during food-deprivation. Meanwhile, ∼2-fold increase at 1 and 3 h post-feeding and an ∼3-fold reduction after a 7-day food-deprivation was observed in NUCB2 mRNA in the goldfish hypothalamus. In vivo, a single intraperitoneal injection of the full-length native (goldfish; gf) nesfatin-1 at a dose of 50 ng/g body weight induced a 23% reduction of food intake one hour post-injection in goldfish. Furthermore, intracerebroventricular injection of gfnesfatin-1 at a dose of 5 ng/g body weight resulted in ∼50% reduction in food intake.Our results provide molecular, anatomical and functional evidences to support potential anorectic and metabolic roles for endogenous nesfatin-1 in goldfish. Collectively, we provide novel information on NUCB2 in non-mammals and an anorexigenic role for nesfatin-1 in goldfish

    Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation.

    Get PDF
    13 pages, 8 figures.-- his article is licensed under a Creative Commons Attribution 4.0 International LicenseDorso-ventral (DV) countershading is a highly-conserved pigmentary adaptation in vertebrates. In mammals, spatially regulated expression of agouti-signaling protein (ASIP) generates the difference in shading by driving a switch between the production of chemically-distinct melanins in melanocytes in dorsal and ventral regions. In contrast, fish countershading seemed to result from a patterned DV distribution of differently-coloured cell-types (chromatophores). Despite the cellular differences in the basis for counter-shading, previous observations suggested that Agouti signaling likely played a role in this patterning process in fish. To test the hypotheses that Agouti regulated counter-shading in fish, and that this depended upon spatial regulation of the numbers of each chromatophore type, we engineered asip1 homozygous knockout mutant zebrafish. We show that loss-of-function asip1 mutants lose DV countershading, and that this results from changed numbers of multiple pigment cell-types in the skin and on scales. Our findings identify asip1 as key in the establishment of DV countershading in fish, but show that the cellular mechanism for translating a conserved signaling gradient into a conserved pigmentary phenotype has been radically altered in the course of evolutionThis work was funded by the Spanish Economy and Competitiveness Ministry projects AGL2011-23581, AGL2014-52473R, AGL2017-89648P to JR, and by a BBSRC SWBio DTP Studentship to JO. Partial funding was obtained from AGL2016-74857-C3-3-R to JMCR. L. Cal was supported by pre-doctoral fellowship FPI funded by Spanish Economy and Competitiveness Ministry (AGL2011-23581) and by pre-doctoral fellowship of the Spanish Personnel Research Training Program funded by Spanish Economy and Competitiveness Ministry (EEBB-C-14- 00467). P Suarez-Bregua was supported by a Campus do Mar PhD grant, Xunta de Galicia and AGL2014-52473R project contract.Peer reviewe

    Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway

    Get PDF
    Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis. Transgenic fish lines enabled mapping of axonal projections leading from the hypothalamus to the brainstem and spinal cord. Targeted laser ablation demonstrated an essential role for of pth4-expressing neurons in larval bone mineralization. Moreover, we show that Runx2 is a direct regulator of pth4 expression and that Pth4 can activate cAMP signaling mediated by Pth receptors. Finally, gain-of-function experiments show that Pth4 can alter calcium/phosphorus levels and affect expression of genes involved in phosphate homeostasis. Based on our discovery and characterization of Pth4, we propose a model for evolution of bone homeostasis in the context of the vertebrate transition from an aquatic to a terrestrial lifestyle.Spanish Economy and Competitiveness Ministry Project [ALG2011-23581, AGL2014-52473R]; Portuguese Foundation for Science and Technology [PTDC/BIA-ANM/4225/2012-phos-fate]; U. S. National Institutes of Health/Office of the Director Grant [R01OD011116, R01 RR020833]; Generalitat de Catalunya [SGR2014-290]; Spanish Economy and Competitiveness Ministry [BFU2010-14875]; Science and Innovation Ministry [AGL2010-22247-C03-01]; Campus do Mar Ph.D. grant; Xunta de Galicia (Santiago, Spain) [AGL2014-52473R]info:eu-repo/semantics/publishedVersio

    The Gonadotropin-Inhibitory Hormone: What We Know and What We Still Have to Learn From Fish

    Get PDF
    Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life

    Mammalian Comparative Sequence Analysis of the Agrp Locus

    Get PDF
    Agouti-related protein encodes a neuropeptide that stimulates food intake. Agrp expression in the brain is restricted to neurons in the arcuate nucleus of the hypothalamus and is elevated by states of negative energy balance. The molecular mechanisms underlying Agrp regulation, however, remain poorly defined. Using a combination of transgenic and comparative sequence analysis, we have previously identified a 760 bp conserved region upstream of Agrp which contains STAT binding elements that participate in Agrp transcriptional regulation. In this study, we attempt to improve the specificity for detecting conserved elements in this region by comparing genomic sequences from 10 mammalian species. Our analysis reveals a symmetrical organization of conserved sequences upstream of Agrp, which cluster into two inverted repeat elements. Conserved sequences within these elements suggest a role for homeodomain proteins in the regulation of Agrp and provide additional targets for functional evaluation

    Tyrosine-rich conopeptides affect voltage-gated K+ channels

    Get PDF
    Two venom peptides, CPY-Pl1 (EU000528) and CPY-Fe1 (EU000529), characterized from the vermivorous marine snails Conus planorbis and Conus ferrugineus, define a new class of conopeptides, the conopeptide Y (CPY) family. The peptides have no disulfide cross-links and are 30 amino acids long; the high content of tyrosine is unprecedented for any native gene product. The CPY peptides were chemically synthesized and shown to be biologically active upon injection into both mice and Caenorhabditis elegans; activity on mammalian Kv1 channel isoforms was demonstrated using an oocyte heterologous expression system, and selectivity for Kv1.6 was found. NMR spectroscopy revealed that the peptides were unstructured in aqueous solution; however, a helical region including residues 12-18 for one peptide, CPY-Pl1, formed in trifluoroethanol buffer. Clones obtained from cDNA of both species encoded prepropeptide precursors that shared a unique signal sequence, indicating that these peptides are encoded by a novel gene family. This is the first report of tyrosine-rich bioactive peptides in Conus venom
    corecore