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ABSTRACT 24 

Dorso-ventral (DV) countershading is a highly-conserved pigmentary adaptation in 25 

vertebrates. In mammals, spatially regulated expression of agouti-signaling protein 26 

(ASIP) generates the difference in shading by driving a switch between the production of 27 

chemically-distinct melanins in melanocytes in dorsal and ventral regions.  In contrast, 28 

fish countershading seemed to result from a patterned DV distribution of differently-29 

coloured cell-types (chromatophores). Despite the cellular differences in the basis for 30 

counter-shading, previous observations suggested that Agouti signaling likely played a 31 

role in this patterning process in fish. To test the hypotheses that Agouti regulated 32 

counter-shading in fish, and that this depended upon spatial regulation of the numbers of 33 

each chromatophore type, we engineered asip1 homozygous knockout mutant zebrafish. 34 

We show that loss-of-function asip1 mutants lose DV countershading, and that this 35 

results from changed numbers of multiple pigment cell-types in the skin and on scales. 36 

Our findings identify asip1 as key in the establishment of DV countershading in fish, but 37 

show that the cellular mechanism for translating a conserved signaling gradient into a 38 

conserved pigmentary phenotype has been radically altered in the course of evolution. 39 

 40 

 41 
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INTRODUCTION 48 

Most vertebrates exhibit a dorso-ventral pigment pattern characterized by a light ventrum 49 

and darkly colored dorsal regions. This countershading confers UV protection against 50 

solar radiation, but also is proposed to provide anti-predator cryptic pigmentation. In 51 

mammals, hair color results from biochemical differences in the melanin produced by 52 

melanocytes, the only neural-crest derived pigment cell-type in this taxon. Best studied 53 

in mice, the local expression of agouti-signaling protein (ASIP) in the ventral skin drives 54 

the dorso-ventral pigment polarization 1,2. ASIP is mainly produced by dermal papillae 55 

cells where it controls the switch between production of eumelanin (black/brown 56 

pigment) to pheomelanin (yellow/red pigment) by antagonizing -melanocyte-57 

stimulating hormone (-MSH) stimulation of the melanocortin 1 receptor (MC1R) 1. 58 

Temporal control of Asip expression as a pulse midway during the hair growth cycle 59 

generates a pale band of pheomelanin in an otherwise dark (eumelanin) hair (‘agouti’ 60 

pattern). In contrast, in the ventral region, constitutive expression of Asip at high levels 61 

represses eumelanin production, resulting in pale hair colour.  62 

Most other groups of vertebrates share the dorso-ventral countershading pattern, but in 63 

ray-finned fishes it results from a patterned distribution of light-reflecting (iridophores 64 

and leucophores) and light-absorbing (melanophores, xanthophores, erythrophores, and 65 

cyanophores) chromatophores 3,4. Zebrafish, a teleost fish model for pigment studies, 66 

obtains its striped pigmentation by the patterned distribution of three types of 67 

chromatophores: melanophores, iridophores and xanthophores 5,6. Furthermore, it is 68 

widely accepted that fish melanophores only produce dark eumelanin, but not 69 

pheomelanin 7. Our recent experiments using overexpression systems have demonstrated 70 

that zebrafish utilizes two distinct adult pigment-patterning mechanisms, the striped 71 

patterning mechanism and the dorso-ventral patterning mechanism 8. Both patterning 72 

mechanisms function largely independently, with the resultant patterns superimposed to 73 

give the full pattern 8. The zebrafish striping mechanism has received much attention and 74 

is based on a cell-cell interaction mechanism 9,10. In contrast, dorso-ventral patterning has 75 

been largely neglected, but we have recently provided evidence that it depends on asip1 76 

expression, and furthermore that this is expressed in a dorso-ventral gradient in the skin 77 

directly comparable to that in mammals 8,11,12. This potential conservation of agouti 78 

signaling protein function is fascinating, since it opens up the possibility of a very 79 

different cellular mechanism of action in mammals and fish 8,13. Specifically, we have 80 
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proposed that Asip1 activity in the ventral skin in zebrafish alters the balance of pigment 81 

cell differentiation, through repressing melanophore differentiation 8. 82 

Studies of Asip1 function in fish to date have relied on gene overexpression approaches, 83 

but loss-of-function experiments provide a complementary approach to test the 84 

interpretation of those overexpression data. Here, we investigate the in vivo functional 85 

role of asip1 in zebrafish by generating asip1 knockout mutants using clustered regularly 86 

interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) 87 

genome engineering tools 14. We demonstrate that asip1 knockout mutant zebrafish 88 

display a disrupted dorso-ventral pigment pattern characterized, in the ventral region, by 89 

an increased number of melanophores and xanthophores accompanied by a severe 90 

decrease in the number of iridophores, i.e. a dorsalised pigment pattern. This dorsalisation 91 

effect extends also somewhat into the stripes, with the more ventral stripes having 92 

melanophore and xanthophore numbers closely resembling their more dorsal 93 

counterparts. Our loss-of-function results provide support for our previous hypothesis that 94 

asip1 controls the evolutionarily conserved countershading coloration in fish, but via a 95 

distinctive cellular mechanism involving control of differentiation of multiple pigment 96 

cell-types. 97 

 98 

RESULTS 99 

Selection and analysis of induced asip1 loss-of-function mutations in zebrafish  100 

Loss-of-function mutations in the asip1 gene were generated using the CRISPR-Cas9 101 

system. We selected the target site in the first coding exon (60 bp after ATG start codon) 102 

(Figs. 1A,B) and found ten different mutated alleles (Fig. 1B). Alleles M1, M3, M5 and 103 

M6 conserved the original open reading frame; therefore, they could potentially generate 104 

a functional protein lacking only one or two amino acids and keeping almost the entire 105 

amino acid sequence. Alleles M2, M4, M7, M8, M9 and M10 show alternative reading 106 

frames downstream of the target site. We selected three potential frameshift mutations, 107 

which yield predicted nonfunctional proteins. Fish carrying each mutation were raised to 108 

generate asip1K.O. lines (F3 generation) and to characterize the phenotype: M2 (CRISPR1-109 

asip1.iim02 zebrafish line), M7 (CRISPR1-asip1.iim07 zebrafish line) and M8 110 

(CRISPR1-asip1.iim08 zebrafish line) (Fig. 1B). The asip1iim02 allele lacks 11 bp (76-86 111 

bp), the asip1iim07 allele has lost 4 bp (77-81 bp), and asip1iim08 lacks 16 bp (Del 62-76 112 

bp) and carries a 15 bp insertion at position 62 downstream of the predicted ATG start 113 

codon (Fig. 1B). In those three alleles, the mutations result in premature stop codons. The 114 
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asip1iim02, asip1iim07 and asip1iim08 encode 71, 38 and 31 amino acid mutant proteins, 115 

respectively (Fig 1.C). All mutated proteins have lost most of their basic central domain 116 

and, most significanctly, the C-terminal poly-cysteine domain, which is the crucial region 117 

for protein activity 15–17. All asip1 knockout mutant zebrafish lines examined resulted in 118 

a similar dorso-ventral pigment phenotype as described below.  119 

 120 

asip1 function in dorsal-ventral pigment patterning 121 

All three asip1-CRISPR knockout lines exhibited a loss of dorso-ventral countershading. 122 

Because we did not find any difference in the pigment pattern across the three-knockout 123 

mutants’ lines, we focused on the study of line CRISPR1-asip1.iim08, here referred to as 124 

asip1K.O..  In asip1K.O. fish, melanophores and xanthophores were more numerous in all 125 

ventral regions (Fig. 2A-2D), including the ventral head (Figs. 2 E,F). In WT fish, 126 

melanophores and xanthophores were very limited in the ventral region, and mainly 127 

located on the jaw and the posterior belly regions, near the pelvic fins (Fig 2G). The WT 128 

phenotype shows a low number of melanophores in the ventral head region and high 129 

number of iridophores around the branchiostegals and operculum (Fig. 2E). In contrast, 130 

asip1K.O. mutants show melanophores spread throughout the jaws, branchiostegal and 131 

opercular regions (Fig. 2F). On the belly, the ventral skin of WT fish showed almost a 132 

total absence of melanophores, so that the bright whitish-reflective iridophore sheet of 133 

the internal abdominal wall is prominent (Fig. 2G). Conversely, asip1K.O. fish displayed 134 

a strong increase in melanophore and xanthophore number in the ventral skin, as well as 135 

many extra cells that transform the incipient 3V of the WT into a prominent 3V reaching 136 

to the head in the asip1K.O. (Fig. 2A-D). We note that the consistent increase in 137 

melanophore numbers in the 2V and 3V stripes can also be considered a dorsalisation 138 

phenomenon, since our counts show them to now resemble their more dorsal counterparts 139 

(Figs 3 and 4). In addition, the abdominal wall exhibits an obvious decrease in the number 140 

of iridophores, resulting in an apparent breakup of the iridophore sheet into smaller 141 

fragments, thus conferring a darker color to the ventral region of asip1K.O. fish (Fig. 2H). 142 

The Sanger-generated mutant, asip1sa13993, showed only a subtle and partial phenotype 143 

compared to asip1K.O. fish, ((e.g. hyperpigmentation in the belly was not obvious; Supp. 144 

Fig. 2)), however, the incipient 3V-stripe of the WT becomes more fully developed in the 145 

asip1sa13993 mutant line.  146 

 147 

Development of the zebrafish asip1K.O. phenotype 148 
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To establish the time point when the phenotype of the asip1 mutants (asip1K.O.) becomes 149 

first apparent during development, melanophores were counted at larval (5dpf, SL 3 mm), 150 

metamorphic (15 dpf, SL 6.3 mm and 30 dpf, SL 7 mm) and two adult stages (60 dpf, SL 151 

13 mm and 210 dpf, SL 25 mm) (Figs. 3 and 4). It has been shown that pigment pattern 152 

changes during development can be distinguished by an increase in the melanophore 153 

number and changes in their distribution 18,19. We have quantified the distribution of 154 

melanophores in WT and asip1K.O. fish along the dorsal-ventral axis, by sampling at 155 

defined positions in the dorsal and ventral head, lateral stripe, and belly (see Materials 156 

and Methods and Fig. 3 and 4 for details). No differences in melanophore numbers were 157 

found at larval stages (5dpf, SL 3 mm) (data not shown). In contrast, the dorsal-ventral 158 

pigment abnormalities began to be visible from the earliest stages of metamorphosis 159 

(15dpf, SL 6.3 mm). Although at 15 dpf there were no differences in melanophore number 160 

in the belly between asip1K.O. and WT fish, melanophore number in the ventral head was 161 

68.7% higher in asip1K.O. fish than in WT fish (P<0.05) (Fig. 3A). At 30 dpf, pigment 162 

abnormalities also appear in the belly: melanophore number in the ventral head was 63% 163 

higher in the asip1K.O. than in WT fish (P<0.05), while in the belly melanophore numbers 164 

were 41% higher in asip1K.O.  than WT belly (P<0.05) (Fig. 3B).  165 

The asip1K.O. fish at 60 and 210 dpf showed significant pigment pattern alterations, 166 

particularly in the ventral region compared to WT fish (Fig. 4B). At 60 dpf, the number 167 

of skin melanophores of asip1K.O. fish was 47% higher (P<0.001) in dark stripe 2V, 86% 168 

higher (P<0.001) in the ventral head, and 98% higher (P<0.001) in the belly than in 169 

equivalent positions of WT fish. No differences were found in dorsal regions or in other 170 

dark stripes (Fig. 4C). Furthermore, we found that the number of xanthophores was also 171 

affected in ventral regions. At 60 dpf, the distribution of xanthophores in anterior area of 172 

the belly was 98% higher (P<0.05) than in WT. No differences were found in dorsal 173 

regions (Fig. 4D). At 210 dpf, the same pattern of an increased number of melanophores 174 

in the ventral region was found. The number of melanophores in asip1K.O. fish was 38% 175 

higher (P<0.001) in dark stripe 2V, 78.6% higher (P<0.001) in dark stripe 3V, 84% higher 176 

(P<0.001) in the ventral head, and 99% higher (P<0.001) in the belly compared to the 177 

equivalent region of WT siblings. Just as in 60 dpf fish, the pigment defects were 178 

restricted to ventral regions (Fig. 4E). At 210 dpf, the number of xanthophores in the belly 179 

region was 96% higher (P<0.001) compared to WT siblings, while no differences were 180 

found in dorsal regions (Fig. 4F).  181 
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If Asip1 functioned in fish by a homologous cellular mechanism to that in mammals, we 182 

would predict the presence of unpigmented melanophores in the ventral skin. To test this, 183 

and to supplement the analysis of pigment cells using their autonomous pigmentation, we 184 

also compared the distribution of transgenic markers of melanophores and iridophores in 185 

asip1K.O. mutants and their WT siblings. Firstly, we imaged fish carrying the 186 

Tg(Kita:GalTA4,UAS:mCherry) transgene, which labels melanophores with membrane-187 

bound mCherry 20. In WT, melanophores were almost never detected in ventral skin 188 

region (Figs. 5A), but importantly neither were unpigmented mCherry-expressing cells 189 

(Fig. 5B). In contrast, asip1 mutants displayed many transgenically-labelled 190 

melanophores in the ventral skin region (Figs. 5C, D). This is in agreement with the 191 

observed increase in the number of melanophores in asip1K.O. at later stages of 192 

development (Fig. 4), but extends those observations to argue against the presence of 193 

specified but amelanic melanophores in the WT belly. 194 

By analyzing fish carrying Tg(TDL358:GFP) transgene, which label iridophores and glia 195 

with cytosolic GFP 21, we confirmed the dense and uniform sheet of iridophores in the 196 

abdominal wall of WT fish (Figs. 5E,F) and showed that, this sheet is broken up into 197 

small fragments in asip1K.O. mutants (Fig. 5G,H). Thus, asip1K.O.  mutants showed a 198 

strong reduction of the iridophore number and many interspersed melanophores (Fig. 5G, 199 

black arrow), as well as some xanthophores (Fig. 5G, orange arrow) in the abdominal 200 

wall.  201 

Additionally, we characterized the contribution to the disrupted countershading 202 

phenotype in asip1K.O.  mutants of pigment cells in the scales. In contrast to ventral scales 203 

of WT siblings which lack all pigmented cell-types (Fig. 6B), ventral scales of asip1 204 

mutants displayed numerous melanophores (Fig. 6A, black arrowheads), xanthophores 205 

(Fig. 6A, yellow arrowheads) and extensive silvery patches of iridophores (Fig. 6A, white 206 

arrows). Thus, scales isolated from the belly of asip1 mutants displayed a “dorsalized” 207 

color pattern (i.e., ventral scales become nearly as dark colored as dorsal scales due to an 208 

increased number of pigment cells) (Fig. 6C, D). 209 

 210 

Rescue of CRISPR mediated mutations 211 

Finally, as a key test of our model, we assess the effect of combining the knockout (KO) 212 

mutant with our previously-described asip1-Tg zebrafish line overexpressing asip1 in the 213 

entire body. In our model, a graded distribution of Asip1 controls the ratio of 214 

melanophore, xanthophore and iridophore differentiation in the skin, with high levels 215 
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ventrally characteristically repressing melanocyte and stimulating iridophore 216 

differentiation; in the dorsum, where Asip1 levels are lowest, melanophores differentiate 217 

and iridophores are suppressed. We have shown that our asip1-Tg line shows a strongly 218 

ventralised pigment pattern in the dorsum (Fig. 7D-F; reference), suggesting that the 219 

ubiquitous Asip1 levels generated are equivalent to those in the belly region of a WT fish. 220 

We predict therefore that in the background of our new asip1KO which lacks the 221 

endogenous gradient of Asip1, the pigment pattern should also be ventralised, but might, 222 

if anything, show a slightly weaker phenotype due to the absence of endogenous Asip1 223 

‘supplementing’ the transgenic Asip1 expression. This is indeed what we observed (Fig. 224 

7). WT fish show the typical striped pattern (Fig. 7A), combined with a darker dorsum 225 

(Fig. 7B), and a light ventrum (Fig. 7C). The asip1-Tg zebrafish phenotype presents a 226 

striped pattern that shows a mild reduction in melanophore number in the 1D and 2D 227 

stripes (Fig 7D), a light belly similar to WT fish (Fig. 7F), but a drastic reduction of dorsal 228 

melanophores (Fig. 7E) due to the ectopic overexpression of asip1 8. In asip1K.O. mutants 229 

(Fig. 7G) the striped pattern is enhanced, with a prominent 3V stripe reaching to the head 230 

(Fig. 7F), the belly is considerably darker (dorsalised) than in WT (Fig. 7I), while the 231 

dorsum remains similar to that of WT (Fig. 7 H). In the asip1K.O.; asip1-Tg, the asip1K.O. 232 

phenotype is suppressed and the asip1-Tg. phenotype prevails (Fig. 7J). The asip1K.O.; 233 

asip1-Tg zebrafish do not show enhancement of the 3V stripe, but instead show a stripe 234 

pattern similar to the asip1-Tg., except that the ?2D stripe is somewhat more prominent, 235 

due to a more WT melanophore count (Fig. 7 J), a light dorsum with a drastic reduction 236 

of dorsal melanophore as the asip1-Tg. fish (Fig. 7K), but a light belly similar to both 237 

asip1-Tg and WT fish (Fig. 7L). These observations are fully consistent with our 238 

hypothesis that the graded expression of asip1 along the dorso-ventral axis is crucial to 239 

establish the dorso-ventral pigment pattern and that this results from changed numbers of 240 

multiple pigment cell-types. 241 

 242 

 243 

DISCUSSION 244 

Asip is a key gene regulating mammalian countershading. Ubiquitous expression of Asip 245 

in viable agouti yellow mice (Ay) results in a phenotype characterized by yellow fur, as 246 

well as hyperphagia, obesity and increased linear growth 22,23. Mammalian 247 

countershading results from an asymmetry in the dorsoventral axis of Asip expression in 248 

the skin, with high levels in ventral regions being driven by a constitutively active 249 
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promoter 1. Similarly, transgenic asip1 overexpression in zebrafish also results in a 250 

disruption of the dorso-ventral pigment pattern 8, again associated with hyperphagia and 251 

increased linear growth 24. However, the cellular mechanisms leading to the pigment 252 

pattern phenotype have been proposed to be different in mammals and fish 8. In mice, 253 

Agouti expression blocks MC1R activity in the ventral skin resulting in a switch in the 254 

melanin sub-type being expressed. Thus, constitutive production of ASIP (e.g. in Ay 255 

genotypes) drives pheomelanin synthesis at the expense of eumelanin and so results in all 256 

yellow fur 22,23. Conversely, absence of ASIP at all stages of the hair cycle mimics the 257 

constitutively active MC1R phenotype, resulting in full eumelanisation of the hair (in 258 

place of any agouti-style banding pattern). In zebrafish, ubiquitous overexpression of 259 

asip1 inhibits dorsal melanogenesis and melanophore differentiation but has no major 260 

effects on stripe melanophores 8,11,12. These effects are probably mediated through Mc1r, 261 

since this receptor binds Asip1 and agouti-related protein (Agrp) as both competitive 262 

antagonists and inverse agonists 11,25. Alterations in the Mc1r coding sequence cause 263 

reduced pigmentation or brown phenotypes (reduced number of melanophores and 264 

melanin content) in cavefish (Astianax mexicanus) whereas Mc1r-morpholino 265 

knockdown in zebrafish recapitulates the brown pigmentation phenotype 26. In our 266 

previous gain-of-function study, we provided data showing that melanophore 267 

differentiation was reduced in the ventralized dorsal regions of asip1 overexpressing 268 

transgenic fish, suggesting that Asip1 represses melanophore differentiation, and mitfa 269 

expression data consistent with a reduction in melanophore specification too 8. Our asip1 270 

loss-of-function data here provides compelling support for this hypothesis that pigment 271 

cell fate choice is, in part, regulated by Asip1. Asip1 knockout lines exhibit a profound 272 

increase in number of ventral melanophores, particularly in the ventral region of the head 273 

but also along the ventral trunk. This dorsalisation phenomenon extends also to the 274 

ventral-most stripes, with the incipient 3V-stripe of the WT becoming fully developed 275 

and the 2V-stripe thickened in asip1K.O mutant lines. Furthermore, our use of transgenic 276 

reporters for melanoblasts and iridoblasts strongly supports the interpretation that these 277 

changes result from switching in the types of pigment cells produced in the belly; thus, 278 

the phenomenon involves regulation of fate specification from multipotent progenitors, 279 

rather than from enhanced or repressed differentiation of specified progenitors.  280 

Using quantitation of expression of the xanthophore and iridophore markers, xanthine 281 

dehydrogenase (xdh) and leucocyte tyrosinase kinase (ltk) respectively 27,28, we were 282 

unable to demonstrate clearly an effect on xanthophore and iridophore differentiation in 283 
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transgenic asip1 overexpressing fish 8. However, these Asip1 transgenic zebrafish did 284 

show an extra iridophore interstripe over D1 that we initially interpreted as simply due to 285 

the enhanced visibility of underlying iridophores resulting from the lack of melanized 286 

cells in the dorsal region 8. Our new loss-of-function mutants and the rescue of CRISPR 287 

induced Asip1 mutations data clearly demonstrates that Asip1 also plays a key role in 288 

regulating both iridophore and xanthophore differentiation in the adult skin, suggesting 289 

that the extra dorsal iridophore interstripe in Asip1 transgenic fish may, in fact, result 290 

from ectopic production of iridophores as well as the absence of melanophores.  291 

Our new loss-of-function data provide independent support for our suggestion8 that Asip1 292 

has no role in embryonic pigment cell development nor in larval (pre-metamorphic) 293 

pigment pattern formation. However, Asip1-dependent effects on pigment pattern 294 

become visible from the very earliest stages of metamorphosis (15 dpf), and then 295 

progressively spread to all ventral pattern elements as they are formed during 296 

metamorphic growth. We note that the timing of initiation of these effects corresponds to 297 

the period when asip1 expression reaches maximum levels (at 15 dpf) and when 298 

significant dorso-ventral differences in asip1 expression appear (30 dpf; 8). Thus, asip1 299 

has a role exclusively in metamorphic and post-metamorphic pigment pattern formation.   300 

Early experimental data in amphibian and fish species identified a diffusible melanization 301 

inhibition factor (MIF), mainly produced by cells in the ventral skin, that inhibits 302 

melanoblast differentiation, but also stimulates or supports iridophore proliferation in the 303 

ventrum 29–31. Our demonstration that absence of Asip1 results in a severe impairment of 304 

ventral iridophore development strongly supports the identification of Asip1 as the 305 

elusive MIF.   306 

Zebrafish iridophores contribute to silver- or white-colored regions. They are classified 307 

into two different types according to the size and number of guanine platelets. Type S 308 

iridophores contain smaller uniform-sized platelets, but in larger numbers, than type L 309 

iridophores. The abdominal wall is covered by a dense internal sheet of type S iridophore 310 

5,6. By analyzing Tg(TDL358:GFP)/asip1K.O mutant zebrafish lines, we show that Asip1 311 

loss-of-function strongly disrupts this abdominal wall iridophore sheet in the ventral 312 

trunk. Our previous studies showed asip1 expression in the iridophores of the zebrafish 313 

abdominal wall by in situ hybridization 8 and promoter-directed reporter expression 13; 314 

our new data suggests that asip1 is necessary for the normal development of this 315 

abdominal iridophore sheet.  316 
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It will be important to determine where, and on what cell-type, Asip1 acts to regulate 317 

numbers of each pigment cell-type. Melanocyte stem cells identified in the dorsal root 318 

ganglia (DRG) have been shown to generate all three pigment cell-types in the post-319 

metamorphic skin of zebrafish, supporting the idea of a common pigment progenitor 32. 320 

These multipotent progenitors have been proposed under a progressive fate restriction 321 

model to subsequently segregate bipotent progenitors (melanophore-iridophore, 322 

melanophore-xanthophores and xanthophore-iridophore) from which  individual pigment 323 

cell fates become specified 32. We propose that Asip1 levels in the skin may control the 324 

fate specification of these progenitors when they arrive at the skin. Thus, high ventral 325 

levels of Asip1 repress melanophore and xanthophore specification and promote 326 

iridophore specification from these progenitors. In contrast, those progenitors choosing 327 

the dorsal migratory route from DRG enter a low Asip1 environment and more frequently 328 

become melanophores and xanthophores (Fig. 8).  329 

We have shown a dramatic increase in the number of ventral xanthophores in asip1K.O 330 

mutants. Our original studies identifying Asip1 in fish suggested an effect on xanthophore 331 

physiology 11. Thus, xanthic goldfish, lacking melanophores, also exhibit a dorso-ventral 332 

pigment pattern with no xanthophores in the ventral region where asip1 expression levels 333 

are maximal 11. Our knockout mutant and the rescue of the CRISPR mediated Asip1 334 

mutations studies reinforces the hypothesis that high Asip1 in ventral skin represses 335 

xanthophore development.   336 

Dorsalisation of pigment pattern is most striking in the ventral scales in asip1K.O 337 

compared with WT siblings. Scales on the belly of WT fish lack all chromatophores but 338 

surprisingly belly scales in asip1K.O exhibit all three types of chromatophores. Although, 339 

it has been shown that the effect of Asip1 over iridophores seems to be different in scales 340 

and in the skin 29,30,31, our data together demonstrate that Asip1 is strongly inhibitory to 341 

chromatophore differentiation in the scales. Accordingly, it has been demonstrated that 342 

goldfish Asip1 conditioned medium represses medaka scale pigmentation 11. Scale 343 

pigmentation has been less-well studied in zebrafish, but it is thought that multipotent 344 

pigment cell progenitors that populate the skin also populate the scales 32. Further work 345 

will be necessary to understand the different responses to Asip1 of these progenitors in 346 

scales versus the skin, but we suggest that these reflect an evolutionarily ancestral dorsal 347 

countershading mechanism that functions in association with scales, and an evolutionarily 348 

derived secondary striping mechanism in deeper layers of the skin.   349 
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In conclusion, our loss-of-function experiments support and extend the results from our 350 

overexpression analysis showing that the graded expression of asip1 along the dorso-351 

ventral axis is crucial to establish the dorso-ventral pigment pattern in ray-finned fish. 352 

Asip1 has a dramatic effect on the ancestral dorso-ventral pigment patterning process, but 353 

also a more subtle control of the striping mechanism. We propose that the Asip1 gradient 354 

is an environmental cue that uses the melanocortin-signaling system to bias the adoption 355 

of pigment cell fates from progenitors that migrate into the skin (Fig. 8). Interestingly, 356 

these biases are subtly different in the scales (where Asip1 represses all pigment cell 357 

specification) and the striped skin (where melanophores and xanthophores are repressed, 358 

while iridophores are promoted). Our work thus provides an important contribution to 359 

understanding how Asip-induced differential effects of cell environment controls pigment 360 

cell fate choice from progenitors.  361 

 362 

METHODS 363 

Fish 364 

Zebrafish were reared as previously described 33 and staged according to Kimmel et al. 365 

34. Fish of the following genotypes were used: TU strain (Tübingen, Nüsslein-Volhard 366 

Lab), Tg(TDL358:GFP) 21 and Tg(kita:GalTA4:UAS:mCherry) 20. Fish care and 367 

procedures in the Kelsh lab were approved by the University of Bath Ethical Review 368 

Committee, and were performed in compliance with the Animals Scientific Procedures 369 

Act 1986 of the UK. In the Rotllant lab, ethical approval (Ref.: CSIC/OH-150/2014) for 370 

all studies was obtained from the Institutional Animal Care and Use Committee of the 371 

IIM-CSIC Institute in accordance with the National Advisory Committee for Laboratory 372 

Animal Research Guidelines licensed by the Spanish Authority (RD53/2013). All studies 373 

conformed to European animal directive (2010/63/UE) for the protection of experimental 374 

animals. 375 

 376 

Generation and analysis of asip1 knockout mutants 377 

Initial study of asip1 (sa13992), a randomly induced point mutation predicted to affect 378 

splicing, failed to reveal a clear pigment pattern defect (Supp. Fig. 1 and 2). The 379 

asip1sa13992 allele was generated by random mutagenesis during a large-scale mutagenesis 380 

project at the Sanger Institute 35, and obtained from the European Zebrafish Resource 381 

Center. 382 



 13 

Due to uncertainties about the likely effect of compensatory mechanisms limiting the 383 

impact of the predicted change in splicing in asip1sa13992, we to used CRISPR/Cas9 384 

genome editing to engineer a likely null allele. To this end, an asip1 loss-of-function 385 

mutation was generated using a CRISPR-Cas9 protocol originally adapted from Bassett 386 

et al. 14 and kindly provided by Dr. Sam Peterson (University of  Oregon). The potential 387 

target sequence was identified with the ChopChop web tool 36. Two long oligonucleotides 388 

(Scaffold oligo: 5`-389 

GATCCGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTA390 

TTTTAACTTGCTATTTCTAGCTCTAAAAC-3`, and gene-specific oligo 5’- 391 

AATTAATACGACTCACTATAGCACACACACATGCCAATGGGTTTTAGAGCT392 

AGAAATAGC-3’) were used to perform a DNA-free PCR to obtain a 125 bp DNA 393 

fragment that includes the previously identified target site sequence (5’- 394 

GCACACACACATGCCAATGG-3’). The PCR reaction was performed in 20 μL 395 

containing 10 μL of 2x Phusion High-Fidelity PCR Master Mix Buffer (New England 396 

Biolabs, UK), 1 μL of gene specific oligo (10 μM), 1 μL of gRNA scaffold oligo (10 μM) 397 

and H2O nuclease free to 20 μL. PCR conditions were 98ºC for 30 sec, 40 cycles of 98ºC 398 

for 10 sec, 60ºC for 10 sec, 72ºC for 15 sec, and a final step of 72ºC for 10 min. The PCR 399 

product was purified using DNA Clean&Concentration-5 Kit (Zymo Research, USA) 400 

according to the manufacturer’s instructions. Purified PCR product was used as template 401 

for in vitro transcription with MEGAscript T7 High yield transcription Kit (Ambion, 402 

USA) according to the manufacturer’s instructions. The gRNA was purified with RNA 403 

Clean&Concentrator 5 (Zymo Research, USA) before to use it. Subsequently, the gRNA 404 

was injected in a concentration of 25 ng/µL together with Cas9 mRNA (transcribed from 405 

the linearized pT3TS-nCas9n plasmid) in a concentration of 50 ng/µL and Phenol red 406 

solution (0,1%). Around 2 nL of this mix was microinjected into the cytoplasm of 407 

zebrafish eggs at the one- or two-cell stage. Dissection microscope (MZ8, Leica) 408 

equipped with a MPPI-2 pressure injector (ASI systems) was used for microinjection. 409 

Different mutations were found and three different potential nonfunctional mutations 410 

were raised as different asip1 knockout lines. The phenotype in each knockout stable line 411 

was similar. For microscope imaging, zebrafish of 5dpf, 15dpf, 30dpf and 180dpf were 412 

anesthetized with tricaine methasulfonate (MS-222, Sigma-Aldrich) and scales were 413 

isolated from the belly and immersed in PBS on a glass slide. Scales and fish were 414 

photographed with a Leica M165FC stereomicroscope equipped with a Leica DFC310FX 415 

camera. 416 
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Double reporter transgenic/asip1 mutant lines were obtained by setting up crosses 417 

between the asip1 mutant line and a reporter transgenic line Tg(TDL358:GFP), which 418 

labels iridophores 21, or a reporter transgenic line Tg(kita:GalTA4:UAS:mCherry), which 419 

labels melanophores 20. The offspring of these crosses were incrossed to obtain 420 

homozygous asip1 knockout mutants. Imaging was carried out on a Leica TCS SP5 421 

confocal microscope. 5dpf, 15dpf and 30 dpf transgenic zebrafish were anesthetized and 422 

photographed. Adult zebrafish (180dpf) were anesthetized with MS-222 and decapitated 423 

to sample a ventral skin section including the abdominal wall and ventral and dorsal 424 

scales. Skin section and scales were placed in PBS and photographed. 425 

 426 

Melanophore and xanthophore counts 427 

The melanophore pattern of asip1 knockout mutant fish (asip1K.O.) was compared with 428 

that of the control fish by quantification of melanized melanophores in both groups (Fig. 429 

2).  The selected regions for melanophore counts were different at each stage of 430 

development. At the early larval stage (5dpf), we counted melanophores in a dorsal view 431 

in a 1mm2 dorsal area (from the edge of the head to edge of the dorsal fin), in the 432 

horizontal myoseptum (lateral stripe) and in a ventral view of the entire head. At the early 433 

metamorphic (15dpf) and also the mid metamorphic stages (30 dpf), we counted 434 

melanophores in a dorsal view on the head in a 1 mm2 dorsal area, in the horizontal 435 

myoseptum and in a ventral view of the head and the belly. In adult fish (60 and 210 dpf) 436 

melanophores within a 1 mm2 area were counted in several positions: in a dorsal view on 437 

the head (head area) and on the dorsal area (from the edge of the head to edge of the dorsal 438 

fin); in a lateral view, on the stripes 2D, 1D, 1V and 2V anterior areas (pectoral to pelvic 439 

fin); and finally, in a ventral view of the head and the belly (pectoral to pelvic fin). The 440 

dorsal-ventral xanthophore pattern of asip1 knockout mutant fish was compared with 441 

control fish by quantification of pigmented xanthophores in post-metamorphic fish (60 442 

and 210 dpf) (Fig.4). Selected regions for xanthophore counting were in the dorsal 443 

anterior trunk (from the rear edge of the head to front edge of the dorsal fin), and in a 444 

ventral view of the belly (from base of pectoral to base of pelvic fin). To analyze the 445 

number of melanophores and xanthophores, seven fish per group were anesthetized as 446 

before and immersed in 10 mg/ml epinephrine (Sigma) solution for 30 min to contract 447 

melanosomes. Fish were photographed on a Leica M165FC stereomicroscope equipped 448 

with a Leica DFC310FX camera. Melanophores were counted using ADOBE 449 

PHOTOSHOP CS2 software (Adobe Systems Software Adobe Systems Ibérica SL, 450 
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Barcelona, Spain) and the ImageJ software (National Institutes of Health, NIH, Maryland, 451 

USA). Data were statistically evaluated by Student’s t-test and data are expressed as mean 452 

± standard error of the mean (SEM). n=7 samples for each count presented. A p-value 453 

<0.05 (asterisks) was considered statistically significant. 454 

 455 

Rescue of CRISPR mediated mutations 456 

Knockout/Transgenic line were obtained by setting up crosses between the CRISPR1-457 

asip1.iim08 mutant line and the transgenic reporter line Tg(Xla.Eef1a1:Cau.Asip1)iim05 458 

8, which ectopically overexpresses asip1 and produces a dorsal-ventral disruption of 459 

pigment pattern phenotype with dorsal skin as pale colored as ventral skin. The offspring 460 

were  then incrossed to obtain the F2 generation and the asip1 locus was sequenced to 461 

confirm the homozygous knockout mutation (asip1K.O.) that carries the dominant asip1 462 

transgene. Adult double transgenic/mutant zebrafish (160dpf) were anesthetized with 463 

MS-222 and photographed. Microscope imaging was carried out on a Leica S6D 464 

stereomicroscope equipped with a Leica DFC310FX camera. 465 

 466 

 467 

 468 
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FIGURE LEGENDS 599 

 600 

Figure 1. CRISPR/Cas9-induced mutations at the zebrafish asip1 locus. (A) Scheme 601 

of the asip1 gene showing the target site mutation (black arrowhead). Coding exons are 602 

represented as white boxes and 5’ UTR and 3’UTR are shown as black boxes. (B) 603 

Sequence of induced deletions in asip1 locus. The first line shows the wild-type sequence. 604 

Black arrowhead labels the protospacer-adjacent motif (PAM). Next lines show different 605 

induced mutations. Italic lower case letters represent inserted new sequence. The number 606 

of deleted (-) and inserted (+) bases are marked on the right side of each sequence. 607 

Selected mutations are labeled by white arrowheads. (C) Predicted amino acid sequence 608 

encoded for asip1 loci. The first line shows the wild type protein, and following lines 609 

show the potential protein sequence of each selected mutation. Grey boxes show the wild 610 

type sequence. Asterisk represents the stop codon. 611 

Figure 2. Adult dorso-ventral countershading pattern is disrupted in asip1K.O.. 612 

Lateral (A, B), anterior-lateral (C, D), ventral head (E, F) and ventral belly (G, H) views 613 



 20 

of 180 dpf WT and asip1K.O. zebrafish. (A, B) The pigment pattern of WT zebrafish is a 614 

striped pigment pattern with dark stripes and light interstripes. Each dark stripe is named 615 

with a code: two primary stripes are called 1D and 1V, and the two secondary stripes are 616 

named 2D and 2V. The asip1K.O. display an extra 3V dark stripe. The asip1K.O. phenotype 617 

is characterized by a darker belly than WT. (C, D) The striped pigment pattern was almost 618 

unaltered in asip1K.O. fish, except that the 2V stripe is wider than in WT, and the ventral 619 

dark stripe 3V is better developed anteriorly. The darker belly of asip1K.O. compared to 620 

WT sibling fish is clearly evident. (E, F) In WT, melanophores are infrequent around the 621 

jaws and branchiostegals; however, branchiostegal, jaw and operculum regions are 622 

clearly hyperpigmented in asip1K.O.. (G, H) Melanophores are virtually absent in WT 623 

belly; thus, WT ventral region shows bright white color as a result of high number of 624 

iridophores in the abdominal wall. However, asip1K.O. shows a consistent 625 

hyperpigmentation, with many melanophores and xanthophores in the ventral skin; the 626 

abdominal wall also seems to be affected, with reduced extent of iridophores and looking 627 

much yellower than WT. Scale bar: (A,B) 5 mm, (C,D, E, F, G, H) 2 mm. Abbreviation: 628 

br, branchiostegal. 629 

Figure 3. Dorsal-ventral distribution of melanophores during metamorphosis. (A) 630 

Distribution and number of melanophores in 15dpf WT and asip1K.O. fish. At this stage, 631 

asip1K.O. already shows significantly higher number of melanophores in the ventral view 632 

of the head. (B) Distribution and number of melanophores in WT and asip1K.O. 30 dpf 633 

fish. At this stage, asip1K.O. shows significantly higher number of melanophores in the 634 

ventral view of the head, but also in the belly. Data are the mean ±SEM, n=7. Asterisks 635 

indicate significant differences between WT and asip1K.O. fish. Scale bar: (A) 200 μm, 636 

(B) 500 μm. 637 

Figure 4. Quantitation of dorsal-ventral distribution of melanophores and 638 

xanthophores in adult WT and asip1K.O. fish. (A) Lateral view of zebrafish showing the 639 

body regions selected for melanophore and xanthophore count. (B) Ventral view of the 640 

WT and asip1K.O. 210 dpf zebrafish fish belly. (C) Distribution and number of 641 

melanophores in WT and asip1K.O. 60dpf fish. At this stage, asip1K.O. shows a 642 

significantly higher number of melanophores in the black stripe 2V, ventral head and 643 

belly. (D) Number of xanthophores in the dorsal and ventral skin of WT and asip1K.O. 644 

60dpf fish. At this stage, asip1K.O. shows a significantly higher number of xanthophores 645 
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in the belly region. (E) Distribution and number of melanophores in WT and asip1K.O. 646 

210 dpf fish. At this stage, asip1K.O. shows significantly higher number of melanophores 647 

also in black stripe 2V, 3V, ventral head and belly. (F) Number of xanthophores in dorsal 648 

and ventral skin of WT and asip1K.O. 210 dpf fish. These fish showed highly significant 649 

higher number of xanthophores in belly region than WT. Data are the mean ±SEM, n=7. 650 

Asterisks indicate significant differences between WT and asip1K.O. fish. Scale bar 651 

(A,C,E) 1mm, (B) 100 μm.  652 

Figure 5. Detailed visualization of ventral pigment cells in WT and asip1 mutants. 653 

(A) Ventral view of 210 dpf WT belly. (B) Belly of 210 dpf WT fish carrying 654 

Tg(Kita:GalTA4;UAS:mCherry) (labels melanophores) transgene shows no 655 

melanophores in ventral skin. (C) Ventral view of 210 dpf asip1K.O. belly. (D) Belly of 656 

210 dpf asip1K.O. fish carrying Tg(Kita:GalTA4;UAS:mCherry) transgene shows high 657 

number of melanophores in ventral skin. (E) Internal view of 210 dpf WT abdominal wall 658 

shows a white sheet of iridophores with few internal melanophores (black arrow). (F) 659 

Abdominal wall of 210 dpf WT fish carrying Tg(TDL358:GFP) (labels iridophores and 660 

glia) transgene displays a uniform and continuous sheet of iridophores. (G) Internal view 661 

of 210 dpf asip1K.O. abdominal wall shows a disrupted and discontinuous sheet of 662 

iridophores with high number of melanophores (black arrow) and some xanthophores 663 

(orange arrow). (H) Abdominal wall of 210 dpf asip1K.O. fish carrying Tg(TDL358:GFP) 664 

transgene exhibits a broken sheet of iridophores. Scale bars: 100 μm. 665 

Figure 6. Adult asip1K.O.  ventral scales displayed a dorsalized color pattern. (A) 210 666 

dpf asip1K.O. ventral scales exhibit a pattern of melanophores (black arrowheads), 667 

xanthophores (yellow arrowheads) and also iridophores (white arrowheads). (B) 210 dpf 668 

WT ventral scale does not exhibit any chromatophores. (C,D) 210 dpf  WT and asip1K.O. 669 

dorsal scales exhibit a similar pattern of melanophores, xanthophores and iridophores. 670 

Scale bars: 100 μm.  671 

 672 

Figure 7. Functional rescue of CRISPR-mediated asip1 mutation.  Lateral (A, D,G,J), 673 

dorsal (B,E,H,K) and ventral-belly (C,F,I,L) views of 160 dpf WT, asip1-Tg,  asip1K.O., 674 

and asip1K.O;asip1-Tg zebrafish. The pigment pattern of WT zebrafish shows (A) normal 675 

striped pattern, (B) dark dorsum and (C) light belly. The pigment pattern of asip1-Tg fish 676 

shows (D) almost normal striped pattern, although dark stripe 2D??? is rather thinner???, 677 
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(E) hypopigmented dorsum and (F) light belly. The pigment pattern of asip1K.O fish shows 678 

(F) almost normal striped pattern, but with dark stripes 2V and 3V more developed than 679 

WT fish, (H) pigmented dorsum similar to WT and (I) hyperpigmented belly compared 680 

to WT. The asip1 K.O+asip1-Tg phenotype shows a phenotype similar to the asip1-Tg 681 

zebrafish, except that dark stripe 2D is more prominent. Scale bar: 5mm. 682 

 683 

Figure 8. Schematic section of metamorphic zebrafish showing the effect of graded 684 

ASIP1 levels on chromatophore specification from multipotent progenitors. Progenitors 685 

are delivered to the skin from multipotent stem cells in the DRG via segmental nerves 686 

(Singh et al., 2016).   687 

 688 
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SUPPLEMENTARY MATERIAL 

 

 

Supplementary Figure 1. asip1(sa13992) mutation (A) Scheme of the asip1 gene 

showing the position of the point mutation (black arrowhead) as in Figure 1A. Wellcome 

Sanger institute suggests this point mutation to be located at an ‘essential splice site.’ 

Coding exons are represented as white boxes and 5’ UTR and 3’UTR are shown as black 

boxes. An alternative 3’ extension to the first exon as suggested by UGENE is indicated 

in grey. The point mutation is located 2 bp downstream of this alternative exon. (B) 

Sequence of point mutation in the asip1 locus. The first line shows the wild-type sequence 
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with the position of the point mutation marked with a black arrowhead. Next line shows 

the sequence of mutant asip1(sa13992). (C) Genomic sequence obtained for wild-type 

fish. (D) Genomic sequence obtained for homozygous asip1(sa13992) fish. 

 

Supplementary Figure 2. Adult dorso-ventral countershading in asip1(sa13992) 

mutant. Lateral (A, B), anterior-lateral (C, D), views of 180 dpf  asip1(sa13992) mutant 

(A, C) and WT(B, D) zebrafish. (A, B) The pigment pattern of WT zebrafish is a striped 

pigment pattern with dark stripes and light interstripes. Each dark stripe is named with a 

code: two primary stripes are called 1D and 1V, and the two secondary stripes are named 

2D and 2V. The asip1(sa13992) mutants  display a more pronounced  3V dark stripe. 

Scale bar: (A,B) 5 mm, (CD) 10 mm. 
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