222 research outputs found

    SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model

    Get PDF
    The gut-brain axis is a bidirectional communication network functionally linking the gut and the central nervous system (CNS). Based on this, the rational manipulation of intestinal microbiota represents a novel attractive therapeutic strategy for the treatment of CNS-associated disorders. In this study, we explored the properties of a probiotic formulation (namely SLAB51) in counteracting brain oxidative damages associated with Alzheimer's disease (AD). Specifically, transgenic AD mice (3xTg-AD) were treated with SLAB51 and the effects on protein oxidation, neuronal antioxidant defence and repair systems were monitored, with the particular focus on the role of SIRT1-related pathways. We demonstrated that SLAB51 markedly reduced oxidative stress in AD mice brain by activating SIRT1-dependent mechanisms, thus representing a promising therapeutic adjuvant in AD treatment

    Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer's disease

    Get PDF
    Alzheimer's disease is the most common progressive neurodegenerative disorder characterized by the abnormal deposition of amyloid plaques, likely as a consequence of an incorrect processing of the amyloid-β precursor protein (AβPP). Dysfunctions in both the ubiquitin-proteasome system and autophagy have also been observed. Recently, an extensive cross-talk between these two degradation pathways has emerged, but the exact implicated processes are yet to be clarified. In this work, we gained insight into such interplay by analyzing human SH-SY5Y neuroblastoma cells stably transfected either with wild-type AβPP gene or 717 valine-to-glycine AβPP-mutated gene. The over-expression of the AβPP mutant isoform correlates with an increase in oxidative stress and a remodeled pattern of protein degradation, with both marked inhibition of proteasome activities and impairment in the autophagic flux. To compensate for this altered scenario, cells try to promote the autophagy activation in a HDAC6-dependent manner. The treatment with amyloid-β(42) oligomers further compromises proteasome activity and also contributes to the inhibition of cathepsin-mediated proteolysis, finally favoring the neuronal degeneration and suggesting the existence of an Aβ(42) threshold level beyond which proteasome-dependent proteolysis becomes definitely dysfunctional

    Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies

    Get PDF
    Wheat amylase/trypsin bi-functional inhibitors (ATIs) are protein stimulators of innate immune response, with a recently established role in promoting both gastrointestinal and extra-gastrointestinal inflammatory syndromes. These proteins have been reported to trigger downstream intestinal inflammation upon activation of TLR4, a member of the Toll-like family of proteins that activates signalling pathways and induces the expression of immune and pro-inflammatory genes. In this study, we demonstrated the ability of ATI to directly interact with TLR4 with nanomolar affinity, and we kinetically and structurally characterized the interaction between these macromolecules by means of a concerted approach based on surface plasmon resonance binding analyses and computational studies. On the strength of these results, we designed an oligopeptide capable of preventing the formation of the complex between ATI and the receptor

    Proteasomes modulation: implications in neurodegenerative diseases and cancer

    Get PDF
    Intracellular proteolysis is critical for controlling pathways such as cell cycle, cell growth and differentiation, apoptosis, regulation of transcriptional factors, carcinogenesis, removal of misfolded or damaged proteins, immune and inflammatory response. Consequently, alteration in protein degradation processes would inevitably lead to pathologic conditions. In fact, the accumulation of damaged proteins promotes the formation of toxic aggregates which alter normal cellular metabolism ultimately triggering apoptotic events. The main structure responsible for the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells is the proteasome. This complex regulates several cellular pathways such as genes transcription, signal transduction, the immune response, carcinogenesis, cell division, DNA repair, morphogenesis of neuronal networks, biogenesis of organelles and apoptotic processes. Among proteasome substrates are included oxidized, damaged and misfolded proteins, the inhibitor of nuclear factor κB (NFκB; IκB), the tumor suppressor p53, the cyclin‐dependent kinase inhibitors p21 and p27 and the proapoptotic protein Bax. All these activities make the proteasomal complex an\ud attractive field of research particularly for its implications in the onset of neurodegenerative diseases and cancer. In fact, Alzheimer’s disease, Parkinson’s disease and prion disorders present an altered proteasome functionality as a common hallmark that further contributes to the deposition of toxic protein aggregates. Furthermore, the modulation of proteasome activity is also considered a\ud potential strategy to control cancer progression through the induction of apoptotic event in cancer cells.\ud The aim of our studies is to further investigate the role of this complex in these disorders following two main lines of research.Initially, we have tried to better elucidate the interplay between the proteasome and those proteins involved in the onset of neurodegenerative diseases, such as amyloidbeta and prions. We have investigated the effects of different forms of amyloid aggregates on proteasome functionality both in isolated complexes and in neuronal\ud cells obtaining a compromised activity, particularly in the presence of oligomeric structures. Then, analyzing brain regions of scrapie‐affected sheep compared to age matched healthy animals, we have measured proteasome activity and evaluated the intracellular localization of the complex and of the prion protein. Interestingly, we have observed an increased proteasome activity in affected animals and a coprecipitation and co‐localization of the two proteins, suggesting that prions affect substrate trafficking and modulate proteasome functionality. Regarding the modulation of proteasomal complexes in cancer, we have paid great attention to the effects of natural molecules, especially polyphenols, on its expression and catalytic activities and to the relation with the induction of apoptotic pathways.\ud In detail, both in silico and in vitro studies have been used to gain insight into the proteasome/polyphenols interaction. We have characterized wheat sprout extracts\ud for their polyphenolic content and then tested the effects on isolated and cellular proteasomes. Furthermore, we have separated two wheat sprout extract components, a polyphenol and a protein fraction and observed an in vitro inhibitory effect on proteasome activity from both components. Then, a comparative study of the effect of such components on both normal and tumor cells has been conducted and, interestingly, tumor cells have shown a significantly higher degree of proteasome impairment and apoptosis induction.\ud Finally, considering their role in the carcinogenic process and in determining an enhancement in the cellular oxidative status, we have investigated if aflatoxins, a particular class of mycotoxins, and extremely low frequency electromagnetic fields may affect the proteasome, in order to evaluate if this complex takes part in their cellular harmful effects. On this regard, studies have been conducted both on isolated and cellular proteasomes.\ud Globally, our results further demonstrate an involvement of the proteasome in numerous human pathologies, supporting the idea that it may play a strategic role as a therapeutic target for the treatment of such disorders

    A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites

    Get PDF
    BACKGROUND: Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these 'killer' yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. METHODS: A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of β-glucanase activity. RESULTS: A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90 %. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a β-glucanase-mediated activity. CONCLUSION: The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts

    Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels

    Get PDF
    Gut microbiota has a proven role in regulating multiple neuro-chemical pathways through the highly interconnected gut-brain axis. Oral bacteriotherapy thus has potential in the treatment of central nervous system-related pathologies, such as Alzheimer's disease (AD). Current AD treatments aim to prevent onset, delay progression and ameliorate symptoms. In this work, 3xTg-AD mice in the early stage of AD were treated with SLAB51 probiotic formulation, thereby affecting the composition of gut microbiota and its metabolites. This influenced plasma concentration of inflammatory cytokines and key metabolic hormones considered therapeutic targets in neurodegeneration. Treated mice showed partial restoration of two impaired neuronal proteolytic pathways (the ubiquitin proteasome system and autophagy). Their cognitive decline was decreased compared with controls, due to a reduction in brain damage and reduced accumulation of amyloid beta aggregates. Collectively, our results clearly prove that modulation of the microbiota induces positive effects on neuronal pathways that are able to slow down the progression of Alzheimer's disease

    Intersection between metabolic dysfunction, high fat diet consumption, and brain aging

    Get PDF
    Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high‐fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high‐fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age‐related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.Fil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Bruce Keller, Annadora J.. State University of Louisiana; Estados UnidosFil: Morrison, Christopher D.. State University of Louisiana; Estados UnidosFil: Fernandez Kim, Sun Ok. State University of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University of Louisiana; Estados UnidosFil: Zhang, Le. State University of Louisiana; Estados UnidosFil: Dasuri, Kalavathi. State University of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University of Louisiana; Estados Unido

    Homology Modeling and Docking Analysis of the Interaction between Polyphenols and Mammalian 20S Proteasomes.

    Get PDF
    Molecular docking of small ligands to biologically active macromolecules has become a valuable strategy to predict the stability of complexes between potential partners and their binding modes. In this perspective, we applied this computational procedure to rationalize the reported role of polyphenols as inhibitors of the mammalian 20S proteasomes. In particular, polyphenols were shown to modulate each proteasomal activity at different extents both in the constitutive and the inducible enzyme. We performed a flexible molecular docking analysis between a set of polyphenols previously demonstrated to have the highest binding affinity and both the constitutive (from deposited PDB structures) and homology modeled active subunits of the IFN-gamma inducible proteasome, to provide insight into the possible mechanism of interaction. Among the tested polyphenols, (-)-epigallocatechin-3-gallate showed the highest affinity for the proteasome subunits, both in terms of intermolecular energy and predicted equilibrium constants, in particular for beta 5 and beta 5i subunits (E(Total)=-66 kcal/mol, K(i)=81.3 mu M and E(Total)=-83.9 kcal/mol, K(i)=0.29 mu M, respectively), known to be related to the chymotrypsin-like and BrAAP activities. Collectively, polyphenols showed a higher affinity for the inducible subunits, in agreement with previous in vitro studies. Additionally, different contributions to the interaction energy (van der Waals, electrostatic, H-bond) of proteasome-polyphenols complexes were dissected

    Ginsenosides Rg1 and Rg2 Activate Autophagy and Attenuate Oxidative Stress in Neuroblastoma Cells Overexpressing Aβ(1-42)

    Get PDF
    Alzheimer’s disease is a neurodegeneration with protein deposits, altered proteolysis, and inflammatory and oxidative processes as major hallmarks. Despite the continuous search for potential therapeutic treatments, no cure is available to date. The use of natural molecules as adjuvants in the treatment of Alzheimer’s disease is a very promising strategy. In this regard, ginsenosides from ginseng root show a variety of biological effects. Here, we dissected the role of ginsenosides Rg1 and Rg2 in modulating autophagy and oxidative stress in neuroblastoma cells overexpressing Aβ(1-42). Key hallmarks of these cellular processes were detected through immunomethods and fluorometric assays. Our findings indicate that ginsenosides are able to upregulate autophagy in neuronal cells as demonstrated by increased levels of LC3II and Beclin-1 proteins and decreased amounts of p62. Simultaneously, an activation of lysosomal hydrolases was observed. Furthermore, autophagy activation promoted the clearance of Aβ(1-42). Rg1 and Rg2 also reduced oxidative stress sources and macromolecule oxidation, promoting NRF2 nuclear translocation and the expression of antioxidant enzymes. Our data further clarify the mechanisms of action of Rg1 and Rg2, indicating new insights into their role in the management of disorders like Alzheimer’s disease

    Natural polyphenols as proteasome modulators and their role as anti-cancer compounds

    Get PDF
    The purpose of this review is to discuss the effect of natural antioxidantcompounds as modulators of the 20S proteasome, a multi-enzymatic multicatalytic complex present in the cytoplasm and nucleus of eukaryotic cells and involved in several cellular activities such as cell-cycle progression, proliferation and the degradation of oxidized and damaged proteins. From this perspective, proteasome inhibition is a promising approach to anticancer therapy and such natural antioxidant effectors can be considered as potential relevant adjuvants and pharmacological models in the study of new drugs
    corecore