118 research outputs found

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Palaeoenvironmental control on distribution of crinoids in the Bathonian (Middle Jurassic) of England and France

    Get PDF
    Bulk sampling of a number of different marine and marginal marine lithofacies in the British Bathonian has allowed us to assess the palaeoenvironmental distribution of crinoids for the first time. Although remains are largely fragmentary, many species have been identified by comparison with articulated specimens from elsewhere, whilst the large and unbiased sample sizes allowed assessment of relative proportions of different taxa. Results indicate that distribution of crinoids well corresponds to particular facies. Ossicles of Chariocrinus and Balanocrinus dominate in deeper-water and lower-energy facies,with the former extending further into shallower-water facies than the latter. Isocrinus dominates in shallower water carbonate facies, accompanied by rarer comatulids, and was also present in the more marine parts of lagoons. Pentacrinites remains are abundant in very high-energy oolite shoal lithofacies. The presence of millericrinids within one, partly allochthonous lithofacies suggests the presence of an otherwise unknown hard substrate from which they have been transported. These results are compared to crinoid assemblages from other Mesozoic localities, and it is evident that the same morphological ad-aptations are present within crinoids from similar lithofacies throughout the Jurassic and Early Cretaceous

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Catalyzing Transformations to Sustainability in the World's Mountains

    Get PDF
    Mountain social‐ecological systems (MtSES) are vital to humanity, providing ecosystem services to over half the planet's human population. Despite their importance, there has been no global assessment of threats to MtSES, even as they face unprecedented challenges to their sustainability. With survey data from 57 MtSES sites worldwide, we test a conceptual model of the types and scales of stressors and ecosystem services in MtSES and explore their distinct configurations according to their primary economic orientation and land use. We find that MtSES worldwide are experiencing both gradual and abrupt climatic, economic, and governance changes, with policies made by outsiders as the most ubiquitous challenge. Mountains that support primarily subsistence‐oriented livelihoods, especially agropastoral systems, deliver abundant services but are also most at risk. Moreover, transitions from subsistence‐ to market‐oriented economies are often accompanied by increased physical connectedness, reduced diversity of cross‐scale ecosystem services, lowered importance of local knowledge, and shifting vulnerabilities to threats. Addressing the complex challenges facing MtSES and catalyzing transformations to MtSES sustainability will require cross‐scale partnerships among researchers, stakeholders, and decision makers to jointly identify desired futures and adaptation pathways, assess trade‐offs in prioritizing ecosystem services, and share best practices for sustainability. These transdisciplinary approaches will allow local stakeholders, researchers, and practitioners to jointly address MtSES knowledge gaps while simultaneously focusing on critical issues of poverty and food security
    • 

    corecore