87 research outputs found

    Transcriptional and Cellular Diversity of the Human Heart

    Get PDF
    Background: The human heart requires a complex ensemble of specialized cell types to perform its essential function. A greater knowledge of the intricate cellular milieu of the heart is critical to increase our understanding of cardiac homeostasis and pathology. As recent advances in low-input RNA sequencing have allowed definitions of cellular transcriptomes at single-cell resolution at scale, we have applied these approaches to assess the cellular and transcriptional diversity of the nonfailing human heart. Methods: Microfluidic encapsulation and barcoding was used to perform single nuclear RNA sequencing with samples from 7 human donors, selected for their absence of overt cardiac disease. Individual nuclear transcriptomes were then clustered based on transcriptional profiles of highly variable genes. These clusters were used as the basis for between-chamber and between-sex differential gene expression analyses and intersection with genetic and pharmacologic data. Results: We sequenced the transcriptomes of 287 269 single cardiac nuclei, revealing 9 major cell types and 20 subclusters of cell types within the human heart. Cellular subclasses include 2 distinct groups of resident macrophages, 4 endothelial subtypes, and 2 fibroblast subsets. Comparisons of cellular transcriptomes by cardiac chamber or sex reveal diversity not only in cardiomyocyte transcriptional programs but also in subtypes involved in extracellular matrix remodeling and vascularization. Using genetic association data, we identified strong enrichment for the role of cell subtypes in cardiac traits and diseases. Intersection of our data set with genes on cardiac clinical testing panels and the druggable genome reveals striking patterns of cellular specificity. Conclusions: Using large-scale single nuclei RNA sequencing, we defined the transcriptional and cellular diversity in the normal human heart. Our identification of discrete cell subtypes and differentially expressed genes within the heart will ultimately facilitate the development of new therapeutics for cardiovascular diseases

    Comparison of Passively Transferred Antibodies in Bighorn and Domestic Lambs Reveals One Factor in Differential Susceptibility of These Species to Mannheimia haemolytica-Induced Pneumonia

    No full text
    Mannheimia haemolytica consistently causes fatal bronchopneumonia in bighorn sheep (BHS; Ovis canadensis ) under natural and experimental conditions. Leukotoxin is the primary virulence factor of this organism. BHS are more susceptible to developing fatal pneumonia than the related species Ovis aries (domestic sheep [DS]). In BHS herds affected by pneumonia, lamb recruitment is severely impaired for years subsequent to an outbreak. We hypothesized that a lack of maternally derived antibodies (Abs) against M. haemolytica provides an immunologic basis for enhanced susceptibility of BH lambs to population-limiting pneumonia. Therefore, the objective of this study was to determine the titers of Abs directed against M. haemolytica in the sera of BH and domestic lambs at birth through 12 weeks of age. Results revealed that BH lambs had approximately 18-fold lower titers of Ab against surface antigens of M. haemolytica and approximately 20-fold lower titers of leukotoxin-neutralizing Abs than domestic lambs. The titers of leukotoxin-neutralizing Abs in the serum and colostrum samples of BH ewes were approximately 157- and 50-fold lower than those for domestic ewes, respectively. Comparatively, the higher titers of parainfluenza 3 virus-neutralizing Abs in the BH lambs ruled out the possibility that these BHS had an impaired ability to passively transfer Abs to their lambs. These results suggest that lower levels of leukotoxin-neutralizing Abs in the sera of BH ewes, and resultant low Ab titers in their lambs, may be a critical factor in the poor lamb recruitment in herds affected by pneumonia

    Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at root s =13 TeV

    Get PDF
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range vertical bar eta vertical bar 0.5 GeV in proton-proton collisions at a center-of-mass energy of root s = 13 TeV. Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic pp data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.Peer reviewe

    Association of genetic variants with primary open-angle glaucoma among individuals with african ancestry

    No full text
    Are there differences in genetic risk factors for primary open-angle glaucoma based on ancestry? FindingsIn this multistage, case-control, genome-wide association study that included 26295 participants, the amyloid-beta A4 precursor protein-binding family B member 2 (APBB2) locus was significantly associated with primary open-angle glaucoma among individuals of African ancestry (odds ratio, 1.19 per copy of the risk allele for single-nucleotide polymorphism rs59892895T>C), but not of European or Asian ancestry. MeaningThis study identified a single-nucleotide polymorphism that demonstrated differential association with primary open-angle glaucoma by ancestry. ImportancePrimary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders. ObjectivesTo perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma. Design, Settings, and ParticipantsA 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma. ExposuresGenetic variants associated with primary open-angle glaucoma. Main Outcomes and MeasuresPresence of primary open-angle glaucoma. Genome-wide significance was defined as PC) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P=2x10(-8)). The association was validated in an analysis of an additional 6937 affected individuals and 14917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P<.001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P=4x10(-13)). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry. Conclusions and RelevanceIn this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies. This genome-wide association study (GWAS) investigates genetic loci associated with primary open-angle glaucoma in individuals in Africa and in the United States with African ancestry.3221716821691FAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo10/18353-9; 02/11575-
    • …
    corecore