44 research outputs found

    Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens

    Get PDF
    Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identified for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (>10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most effective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (>50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa

    Predicting coral dynamics through climate change

    Get PDF
    Thermal-stress events are changing the composition of many coral reefs worldwide. Yet, determining the rates of coral recovery and their long-term responses to increasing sea-surface temperatures is challenging. To do so, we first estimated coral recovery rates following past disturbances on reefs in southern Japan and Western Australia. Recovery rates varied between regions, with the reefs in southern Japan showing more rapid recovery rates (intrinsic rate of increase, r = 0.38 year⁻¹) than reefs in Western Australia (r = 0.17 year⁻¹). Second, we input these recovery rates into a novel, nonlinear hybrid-stochastic-dynamical system to predict the responses of Indo-Pacific coral populations to complex inter-annual temperature cycles into the year 2100. The coral recovery rates were overlaid on background increases in global sea-surface temperatures, under three different climate-change scenarios. The models predicted rapid recovery at both localities with the infrequent and low-magnitude temperature anomalies expected under a conservative climate-change scenario, Representative Concentration Pathway (RCP) 4.5. With moderate increases in ocean temperatures (RCP 6.0) the coral populations showed a bimodal response, with model runs showing either recovery or collapse. Under a business-as-usual climate-change scenario (RCP 8.5), with frequent and intense temperature anomalies, coral recovery was unlikely

    Effects of temperature on gene expression in embryos of the coral Montastraea faveolata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral <it>Montastraea faveolata</it>. Embryos were exposed to 27.5°C, 29.0°C, and 31.5°C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours.</p> <p>Results</p> <p>Analysis of differentially expressed genes indicated that increased temperatures may lead to oxidative stress, apoptosis, and a structural reconfiguration of the cytoskeletal network. Metabolic processes were downregulated, and the action of histones and zinc finger-containing proteins may have played a role in the long-term regulation upon heat stress.</p> <p>Conclusions</p> <p>Embryos responded differently depending on exposure time and temperature level. Embryos showed expression of stress-related genes already at a temperature of 29.0°C, but seemed to be able to counteract the initial response over time. By contrast, embryos at 31.5°C displayed continuous expression of stress genes. The genes that played a role in the response to elevated temperatures consisted of both highly conserved and coral-specific genes. These genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.</p

    Testing methods to mitigate Caribbean yellow-band disease on Orbicella faveolata

    Get PDF
    Outbreaks of coral diseases continue to reduce global coral populations. In the Caribbean, yellow band is a severe and wide-spread disease that commonly affects corals of the Orbicella spp. complex, significantly impeding coral reproduction, and hindering the natural recovery of Orbicella spp. populations. Caribbean yellow-band disease (CYBD) lesions may be severe, and often result in the complete loss of coral tissue. The slow spread of CYBD, however, provides an opportunity to test methods to mitigate the disease. Here we report the results of in situ experiments, conducted within Buck Island Reef National Monument in St. Croix, USVI, to test the effectiveness of three techniques to minimize disease impact on Orbicella faveolata: (1) shading, (2) aspirating, and (3) chiseling a “firebreak” to isolate the lesion. Neither shading nor aspirating the diseased tissue significantly reduced CYBD tissue loss. However, chiseling reduced the rate and amount of tissue lost by 31%. While 30–40% of the chiseled lesions appeared to be free of disease signs 12–16 months after treatment, success significantly and steadily declined over 23 months, indicating a possible lack of long-term viability of the technique. The results of this study demonstrate that creating a “firebreak” between diseased and healthy- appearing tissue slows the spread of the disease and may prolong the life of O. faveolata colonies. The firebreak method yielded the best results of all the techniques tested, and also required the least amount of effort and resources. However, we do not recommend that this treatment alone be used for long-term disease mitigation. Rather, we propose that modifications of this and other treatment options be sought. The results also highlight the need for extended monitoring of CYBD after any treatment, due to the slow but variable rate and pattern of tissue loss in this disease

    Testing methods to mitigate Caribbean yellow-band disease on Orbicella faveolata

    Get PDF
    Outbreaks of coral diseases continue to reduce global coral populations. In the Caribbean, yellow band is a severe and wide-spread disease that commonly affects corals of the Orbicella spp. complex, significantly impeding coral reproduction, and hindering the natural recovery of Orbicella spp. populations. Caribbean yellow-band disease (CYBD) lesions may be severe, and often result in the complete loss of coral tissue. The slow spread of CYBD, however, provides an opportunity to test methods to mitigate the disease. Here we report the results of in situ experiments, conducted within Buck Island Reef National Monument in St. Croix, USVI, to test the effectiveness of three techniques to minimize disease impact on Orbicella faveolata: (1) shading, (2) aspirating, and (3) chiseling a “firebreak” to isolate the lesion. Neither shading nor aspirating the diseased tissue significantly reduced CYBD tissue loss. However, chiseling reduced the rate and amount of tissue lost by 31%. While 30–40% of the chiseled lesions appeared to be free of disease signs 12–16 months after treatment, success significantly and steadily declined over 23 months, indicating a possible lack of long-term viability of the technique. The results of this study demonstrate that creating a “firebreak” between diseased and healthy-appearing tissue slows the spread of the disease and may prolong the life of O. faveolata colonies. The firebreak method yielded the best results of all the techniques tested, and also required the least amount of effort and resources. However, we do not recommend that this treatment alone be used for long-term disease mitigation. Rather, we propose that modifications of this and other treatment options be sought. The results also highlight the need for extended monitoring of CYBD after any treatment, due to the slow but variable rate and pattern of tissue loss in this disease

    Rapid counting and spectral sorting of live coral larvae using large-particle flow cytometry

    Get PDF
    Research with coral embryos and larvae often requires laborious manual counting and sorting of individual specimens, usually via microscopy. Because many coral species spawn only once per year during a narrow temporal window, sample processing is a time-limiting step for research on the early life-history stages of corals. Flow cytometry, an automated technique for measuring and sorting particles, cells, and cell-clusters, is a potential solution to this bottleneck. Yet most flow cytometers do not accommodate live organisms of the size of most coral embryos (> 250 µm), and sample processing is often destructive. Here we tested the ability of a large-particle flow cytometer with a gentle pneumatic sorting mechanism to process and spectrally sort live and preserved Montipora capitata coral embryos and larvae. Average survival rates of mechanically-sorted larvae were over 90% and were comparable to those achieved by careful hand-sorting. Preserved eggs and embryos remained intact throughout the sorting process and were successfully sorted based on real-time size and fluorescence detection. In-line bright-field microscopy images were captured for each sample object as it passed through the flow-cell, enabling the identification of early-stage embryos (2-cell to morula stage). Samples were counted and sorted at an average rate of 4 s larva−1 and as high as 0.2 s larva−1 for high-density samples. Results presented here suggest that large-particle flow cytometry has the potential to significantly increase efficiency and accuracy of data collection and sample processing during time-limited coral spawning events, facilitating larger-scale and higher-replication studies with an expanded number of species

    Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata

    Get PDF
    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean) temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore