469 research outputs found

    Z decays into light gluinos: a calculation based on unitarity

    Full text link
    The Z boson can decay to a pair of light gluinos through loop-mediated processes. Based on unitarity of the S-matrix, the imaginary part of the decay amplitude is computed in the presence of a light bottom squark. This imaginary part can provide useful information on the full amplitude. Implications are discussed for a recently proposed light gluino and light bottom squark scenario.Comment: 19 pages, LaTeX, 3 figures, submitted to Phys. Rev.

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    Constraints on Large Extra Dimensions with Bulk Neutrinos

    Full text link
    We consider right-handed neutrinos propagating in δ\delta (large) extra dimensions, whose only coupling to Standard Model fields is the Yukawa coupling to the left-handed neutrino and the Higgs boson. These theories are attractive as they can explain the smallness of the neutrino mass, as has already been shown. We show that if δ\delta is bigger than two, there are strong constraints on the radius of the extra dimensions, resulting from the experimental limit on the probability of an active state to mix into the large number of sterile Kaluza-Klein states of the bulk neutrino. We also calculate the bounds on the radius resulting from requiring that perturbative unitarity be valid in the theory, in an imagined Higgs-Higgs scattering channel.Comment: 24 pages, 4 figures, revtex4. v2: Minor typos corrected, references adde

    Some Findings Concerning Requirements in Agile Methodologies

    Get PDF
    gile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies

    Squark Mixing in Electron-Positron Reactions

    Full text link
    Squark mixing plays a large role in the phenomenology of the minimal supersymmetric standard model, determining the mass of the lightest Higgs boson and the electroweak interactions of the squarks themselves. We examine how mixing may be investigated in high energy e+ee^+ e^- reactions, both at LEP-II and the proposed linear collider. In particular, off-diagonal production of one lighter and one heavier squark allows one to measure the squark mixing angle, and would allow one to test the mass relations for the light Higgs boson. In some cases off-diagonal production may provide the best prospects to discover supersymmetry. In the context of the light bottom squark scenario, we show that existing data from LEP-II should show definitive evidence for the heavier bottom squark provided that its mass mb~2120m_{\tilde{b}_2} \le 120 GeV.Comment: 22 pages, latex, 6 figure

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    High Altitude test of RPCs for the ARGO-YBJ experiment

    Get PDF
    A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory (Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive Air Showers was studied. Efficiency and time resolution measurements at the pressure and temperature conditions typical of high mountain laboratories, are reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure

    Theory and phenomenology of two-Higgs-doublet models

    Get PDF
    We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either specific ansatze for the Yukawa couplings or by the introduction of family symmetries. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and its renormalization-group improvement. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.Comment: v3: 180 pages, 506 references, new chapter 7 with recent LHC results; referee comments taken into account; submitted to Physics Report
    corecore