7 research outputs found

    Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato

    No full text
    Nucleotide binding site leucine-rich repeat (NLR) proteins of the plant innate immune system are negatively regulated by the miR482/2118 family miRNAs that are in a distinct 22-nt class of miRNAs with a double mode of action. First, they cleave the target RNA, as with the canonical 21-nt miRNAs, and second, they trigger secondary siRNA production using the target RNA as a template. Here, we address the extent to which the miR482/2118 family affects expression of NLR mRNAs and disease resistance. We show that structural differences of miR482/2118 family members in tomato (Solanum lycopersicum) are functionally significant. The predicted target of the miR482 subfamily is a conserved motif in multiple NLR mRNAs, whereas for miR2118b, it is a noncoding RNA target formed by rearrangement of several different NLR genes. From RNA sequencing and degradome data in lines expressing short tandem target mimic (STTM) RNAs of miR482/2118, we confirm the different targets of these miRNAs. The effect on NLR mRNA accumulation is slight, but nevertheless, the tomato STTM lines display enhanced resistance to infection with the oomycete and bacterial pathogens. These data implicate an RNA cascade of miRNAs and secondary siRNAs in the regulation of NLR RNAs and show that the encoded NLR proteins have a role in quantitative disease resistance in addition to dominant gene resistance that has been well characterized elsewhere. We also illustrate the use of STTM RNA in a biotechnological approach for enhancing quantitative disease resistance in highly bred cultivars.This work was supported by the Balzan Foundation and European Research Council Advanced Investigator Grant ERC-2013-AdG 340642. S.S. is funded by Gatsby Foundation Fellowship GAT3395/GLD and Royal Society University Research Fellowship UF160413. D.C.B. is the Royal Society Edward Penley Abraham Research Professor

    Innovation, conservation, and repurposing of gene function in root cell type development

    Get PDF
    Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals

    Innovation, conservation, and repurposing of gene function in root cell type development

    Get PDF
    Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text
    corecore