36 research outputs found

    J-chronic total occlusion score predictive capacity for percutaneous coronary intervention success of chronic total occlusion: Results from a European single center cohort with progressive experience over time

    Get PDF
    Background: Several scoring systems have been described to assess the level of difficulty and to predict the probability of success of percutaneous coronary intervention (PCI) of chronic total occlusion (CTO). The J-CTO score was initially developed to correlate CTO complexity with guidewire time crossing through the lesion within 30 min. Moreover, almost all scoring systems represent procedures performed by seasoned operators. Herein, this study sought to evaluate the predictive capacity of J-CTO for PCI success in a European single-center cohort with growing experience in the approach of CTO. Methods: 526 procedures were performed between 2007 and 2020 mainly by a single operator. The predictive power of J-CTO score was assessed by area under the receiver-operator characteristic curve (ROC) in the entire cohort and additionally in two separate periods. The goodness-of-fit of the model was evaluated by the Hosmer and Lemeshow statistic. Results: Successful procedure in first-attempt PCI was 79.5% and the overall success including 47 repeated procedures was achieved in 85.8%. The retrograde approach was attempted in 14.4%. The score was inversely associated with procedural success and lower success rate in more difficult CTOs (p < 0.001). ROC curve for the entire cohort, and first block (case 1–200) and second block (case 201–526) was 0.696, 0.661 and 0.748, respectively. The model showed good calibration for the entire cohort (X2 = 1.7; p = 0.43). Conclusions: J-CTO score showed an acceptable predictive power for procedural success in this cohort although its discriminatory power is better as the level of experience is improved

    Human Metastatic Cholangiocarcinoma Patient-Derived Xenografts and Tumoroids for Preclinical Drug Evaluation

    Get PDF
    Human metastatic cholangiocarcinoma; Xenografts; TumoroidsColangiocarcinoma metastàtic humà; Xenoempelts; TumoroidesColangiocarcinoma metastásico humano; Xenoinjertos; TumoroidesPurpose: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%–50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. Experimental Design: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. Results: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. Conclusions: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.This work was supported by grants from the Fundació Marató TV3 awarded to T. Macarulla, M. Melé, and S. Peiró; BeiGene research grant awarded to T. Macarulla and S. Peiró; AECC (INVES20036TIAN), Ramón y Cajal investigator program (RYC2020-029098-I), Proyecto de I+D+i (PID2019-108008RJ-I00), and FERO Foundation grant awarded to T.V. Tian; Proyecto de Investigación en Salud from the Instituto de Salud Carlos III (ISCIII) (PI20/00898) awarded to T. Macarulla; FIS/FEDER from the Instituto de Salud Carlos III (ISCIII) (PI12/01250; CP08/00223; PI16/00253 and CB16/12/00449) awarded to S. Peiró; and Ramón y Cajal investigator program (RYC-2017-22249) awarded to M. Melé. Q. Serra-Camprubí is a recipient of the Ph.D. fellowship from La Caixa Foundation (LCF/PR/PR12/51070001). A. Llop-Guevara was supported by the AECC (INVES20095LLOP) and V. Serra by the ISCIII (CPII19/00033). E.J. Arenas was funded by the AECC (POSTD211413AREN). J. Arribas is funded by the Instituto de Salud Carlos III (AC15/00062, CB16/12/00449, and PI22/00001). This publication is based upon the work of COST Action CA18122, European Cholangiocarcinoma Network, supported by the COST (European Cooperation in Science and Technology, www.cost.eu), a funding agency for research and innovation networks. The authors would like to thank Dr. V.A. Raker for manuscript editing and Drs. N. Herranz and J. Mateo for scientific discussions. The authors acknowledge the infrastructure and support of the FERO Foundation, La Caixa Foundation, and the Cellex Foundation

    Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes

    Get PDF
    Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic ‘host’ gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters

    Lipoatròfia semicircular: protocol d'actuació 2015

    Get PDF
    Lipoatròfia semicircular; Prevenció; Procediments d'actuacióLipoatrophia semicircularis; Prevention; ProceduresLipoatrofia semicircular; Prevención; Procedimientos de actuaciónRecull detallat de les mesures preventives, de les actuacions en cas de lipoatròfia semicircular i tot allò relacionat amb l'obtenció de dades per a la notificació i seguiment de la malaltia

    Characterization of Novel Paternal ncRNAs at the Plagl1 Locus, Including Hymai, Predicted to Interact with Regulators of Active Chromatin

    Get PDF
    Genomic imprinting is a complex epigenetic mechanism of transcriptional control that utilizes DNA methylation and histone modifications to bring about parent-of-origin specific monoallelic expression in mammals. Genes subject to imprinting are often organised in clusters associated with large non-coding RNAs (ncRNAs), some of which have cis-regulatory functions. Here we have undertaken a detailed allelic expression analysis of an imprinted domain on mouse proximal chromosome 10 comprising the paternally expressed Plagl1 gene. We identified three novel Plagl1 transcripts, only one of which contains protein-coding exons. In addition, we characterised two unspliced ncRNAs, Hymai, the mouse orthologue of HYMAI, and Plagl1it (Plagl1 intronic transcript), a transcript located in intron 5 of Plagl1. Imprinted expression of these novel ncRNAs requires DNMT3L-mediated maternal DNA methylation, which is also indispensable for establishing the correct chromatin profile at the Plagl1 DMR. Significantly, the two ncRNAs are retained in the nucleus, consistent with a potential regulatory function at the imprinted domain. Analysis with catRAPID, a protein-ncRNA association prediction algorithm, suggests that Hymai and Plagl1it RNAs both have potentially high affinity for Trithorax chromatin regulators. The two ncRNAs could therefore help to protect the paternal allele from DNA methylation by attracting Trithorax proteins that mediate H3 lysine-4 methylation

    Nutrition for the ageing brain: towards evidence for an optimal diet

    Get PDF
    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline

    Nutrition for the ageing brain: towards evidence for an optimal diet

    Get PDF
    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline

    The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus

    Get PDF
    [Background] Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9.[Results] Utilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression.[Conclusions] We have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locus.This work was supported by Spanish Ministerio de Educacion y Ciencia (grant number BFU2011-27658 to DM); Fundació La Marató de TV3 (101130 to DM); Telethon-Italia grant number GGP11122 (to AR). DM and AR are members of the COST action BM1208. DM is a Ramon y Cajal research fellow and AGA was funded by a FPU studentship.Peer Reviewe

    Tomato belowground–aboveground interactions: Rhizophagus irregularis affects foraging behavior and life history traits of the predator Macrolophus pygmaeus (Hemiptera: Miridae)

    Get PDF
    In recent years, studies on arbuscular mycorrhizal fungi (AMF) have been revealing that the belowground symbiosis can influence the performance of aboveground herbivores and their natural enemies through its effects on the host plant. In this study, we tested whether the colonization of tomato plants by the arbuscular mycorrhizal fungus Rhizophagus irregularis (Syn. Glomus intraradices Schenk and Smith) (Glomeromycota: Glomeraceae) affects the performance of the zoophytophagous mirid bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Mycorrhizal colonization in tomato plants positively influenced the predator host-plant acceptance for feeding and oviposition, as well as nymphal survival and female weight. We hypothesize that AMF can modify mirid bug foraging behavior and performance

    Maternal Diabetes and Cognitive Performance in the Offspring: A Systematic Review and Meta-Analysis.

    No full text
    Diabetes during gestation is one of the most common pregnancy complications associated with adverse health effects for the mother and the child. Maternal diabetes has been proposed to negatively affect the cognitive abilities of the child, but experimental research assessing its impact is conflicting. The main aim of our study was to compare the cognitive function in children of diabetic and healthy pregnant women.A systematic review and meta-analysis was conducted through a literature search using different electronic databases from the index date to January 31, 2015. We included studies that assessed the cognitive abilities in children (up to 14 years) of diabetic and non-diabetic mothers using standardized and validated neuropsychological tests.Of 7,698 references reviewed, 12 studies involving 6,140 infants met our inclusion criteria and contributed to meta-analysis. A random effect model was used to compute the standardized mean differences and 95% confidence interval (CI) were calculated. Infants (1-2 years) of diabetic mothers had significantly lower scores of mental and psychomotor development compared to control infants. The effect size for mental development was -0.41 (95% CI -0.59, -0.24; p<0.0001) and for psychomotor development was -0.31 (95% CI -0.55, -0.07; p = 0.0125) with non-significant heterogeneity. Diabetes during pregnancy could be associated with decreased intelligence quotient scores in school-age children, although studies showed significant heterogeneity.The association between maternal diabetes and deleterious effects on mental/psychomotor development and overall intellectual function in the offspring must be taken with caution. Results are based on observational cohorts and a direct causal influence of intrauterine hyperglycemia remains uncertain. Therefore, more trials that include larger populations are warranted to elucidate whether gestational diabetes mellitus (GDM) has a negative impact on offspring central nervous system (CNS)
    corecore