117 research outputs found

    Climatic implications of background acidity and other chemistry derived from electrical studies of the Greenland Ice Core Project ice core

    Get PDF
    © 1997 by the American Geophysical Union. High-resolution continuous profiles were obtained on the Greenland Ice Core Project (GRIP) ice core using two different electrical methods. After correction for temperature and density, the electrical conductivity method (ECM) technique responds only to acidity, while dielectric profiling (DEP) responds to acid, ammonium, and chloride. Detailed chemistry on a section of glacial-age ice allows us to confirm the calibration factor for chloride in DEP. Acidity dominates the DEP variability in the Holocene, Allerod/Bolling, and larger interstadials; ammonium dominates in the Younger Dryas, while chloride is the major contributor in cold periods including smaller interstadials. From the electrical signals plotted on a linear timescale we can deduce the background (nonvolcanic) acidity of the ice, varying from always acidic in the Holocene to always alkaline in the cold periods. In the interstadials, the ice is close to neutral, with most of it acidic in larger interstadials, most of it alkaline in smaller ones, and rapid alternations within interstadials. It is not clear whether neutralization of individual acidic particles occurred in the atmosphere or whether acid and alkaline particles coexisted until deposition in the snowpack. The changes in acidity observed at GRIP apply at least to all of Greenland and probably to much of North America. There would have been ecological effects and important changes in the uptake of some chemicals onto ice. If acidic sulfate particles were neutralized and removed from the atmosphere, which remains uncertain, then there are atmospheric chemistry and radiative effects that require further investigation

    A revised age of ad 667–699 for the latest major eruption at Rabaul

    Get PDF
    The most recent major eruption at Rabaul was one of the largest known events at this complex system, having a VEI rating of 6. The eruption generated widespread airfall pumice lapilli and ash deposits and ignimbrites of different types. The total volume of pyroclastic material produced in the eruption exceeded 11 km3 and led to a new phase of collapse within Rabaul Caldera. Initial 14C dating of the eruptive products yielded an age of about 1400 yrs BP, and the eruption became known as the "1400 BP" eruption. Previous analyses of the timing of the eruption have linked it to events in AD 536 and AD 639. However, we have re-evaluated the age of the eruption using the Bayesian wiggle-match radiocarbon dating method, and the eruption is now thought tohave occurred in the interval AD 667-699. The only significant equatorial eruptions recorded in both Greenland and Antarctic ice during this interval are at AD 681 and AD 684, dates that coincide with frost rings in bristlecone pines of western USA in the same years. Definitively linking the Rabaul eruption to this narrow age range will require identification of Rabaul tephra in the ice records. However, it is proposed that a new working hypothesis for the timing of the most recent major eruption at Rabaul is that it occurred in the interval AD 681-684

    Aerosols in the Pre-industrial Atmosphere

    Get PDF
    Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future

    Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre

    Get PDF
    Die häufigsten vulkanischen Volatilen sind H2O, CO2, SO3 und Halogene. Zusammensetzung, Menge und Injektionsraten von vulkanischen Gasen und Partikeln in die Troposphäre und Stratosphäre hängen ab von der chemischen Zusammensetzung eines Magmas, dem plattentektonischen Milieu sowie Eruptionsmechanismen und Eruptionsraten. Über 90% der eruptierten Magmen sind basaltischer Zusammensetzung mit niedriger Viskosität, relativ geringen Volatilengehalten und meist niedrigen Eruptionsraten sowie wenig explosiven Eruptionen überwiegend entlang der mittelozeanischen Rücken in großen Wassertiefen. Magmen in Inselbögen und Subduktionszonen an Kontinenträndern sind H2O-reich, in anderen plattentektonischen Milieus überwiegt in basaltischen Magmen CO2. In mafischen Magmen ist CO2 schlecht löslich und kann daher schon mehrere Kilometer unter der Erdoberfläche als Gasphase aus einem Magma entweichen. Felsische (hochdifferenzierte) Magmen, H2O-reich und CO2-arm, eruptieren oft hochexplosiv, insbesondere an Subduktionszonen, und mit hohen Eruptionsraten, z.B. El Chichón (Mexiko, 1982) und Pinatubo (Philippinen, 1991). Ihre Eruptionssäulen (Gas-/Partikelgemische) können bis ca. 40 km Höhe erreichen und sind Hauptlieferant der in die Stratosphäre injizierten Gasmengen

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe
    corecore