2,607 research outputs found
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions
The phase diagram of quark gluon plasma (QGP) formed at a very early stage
just after the heavy ion collision is obtained by using a holographic dual
model for the heavy ion collision. In this dual model colliding ions are
described by the charged shock gravitational waves. Points on the phase diagram
correspond to the QGP or hadronic matter with given temperatures and chemical
potentials. The phase of QGP in dual terms is related to the case when the
collision of shock waves leads to formation of trapped surface. Hadronic matter
and other confined states correspond to the absence of trapped surface after
collision.
Multiplicity of the ion collision process is estimated in the dual language
as area of the trapped surface. We show that a non-zero chemical potential
reduces the multiplicity. To plot the phase diagram we use two different dual
models of colliding ions, the point and the wall shock waves, and find
qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte
Cell-free (RNA) and cell-associated (DNA) HIV-1 and postnatal transmission through breastfeeding
<p>Introduction - Transmission through breastfeeding remains important for mother-to-child transmission (MTCT) in resource-limited settings. We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum.</p>
<p>Materials and Methods - Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission.</p>
<p>Results - There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33–4.59) vs. aHR 1.52 (95% CI, 1.17–1.96), respectively]. At 6 months, cell-free and cell-associated levels (per ml) in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-free than cell-associated levels [aHR 2.53 (95% CI 1.64–3.92) vs. 1.73 (95% CI 0.94–3.19), respectively].</p>
<p>Conclusions - The findings suggest that cell-associated virus level (per ml) is more important for early postpartum HIV-1 transmission (at 6 weeks) than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal for 2015 of eliminating vertical transmission. More studies would further knowledge on mechanisms of HIV-1 transmission and help develop more effective drugs during lactation.</p>
Dynamical R-parity Breaking at the LHC
In a class of extensions of the minimal supersymmetric standard model with
(B-L)/left-right symmetry that explains the neutrino masses, breaking R-parity
symmetry is an essential and dynamical requirement for successful gauge
symmetry breaking. Two consequences of these models are: (i) a new kind of
R-parity breaking interaction that protects proton stability but adds new
contributions to neutrinoless double beta decay and (ii) an upper bound on the
extra gauge and parity symmetry breaking scale which is within the large hadron
collider (LHC) energy range. We point out that an important prediction of such
theories is a potentially large mixing between the right-handed charged lepton
() and the superpartner of the right-handed gauge boson (), which leads to a brand new class of R-parity violating interactions of
type and \widetilde{d^c}^\dagger\u^c
e^c. We analyze the relevant constraints on the sparticle mass spectrum and
the LHC signatures for the case with smuon/stau NLSP and gravitino LSP. We note
the "smoking gun" signals for such models to be lepton flavor/number violating
processes: (or ) and
(or ) without
significant missing energy. The predicted multi-lepton final states and the
flavor structure make the model be distinguishable even in the early running of
the LHC.Comment: 30 pages, 13 figures, 6 tables, reference adde
Radiative contribution to neutrino masses and mixing in SSM
In an extension of the minimal supersymmetric standard model (popularly known
as the SSM), three right handed neutrino superfields are introduced to
solve the -problem and to accommodate the non-vanishing neutrino masses
and mixing. Neutrino masses at the tree level are generated through parity
violation and seesaw mechanism. We have analyzed the full effect of one-loop
contributions to the neutrino mass matrix. We show that the current three
flavour global neutrino data can be accommodated in the SSM, for both
the tree level and one-loop corrected analyses. We find that it is relatively
easier to accommodate the normal hierarchical mass pattern compared to the
inverted hierarchical or quasi-degenerate case, when one-loop corrections are
included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other
minor changes, references adde
Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw
We study the possibility of a light Dark Matter (DM) within a constrained
Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM
singlet-pair sector to account for the non-zero neutrino masses by inverse
seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed
at high scale and the singlet neutrino sector at low scale, we find that,
contrary to the case of the usual cMSSM where the neutralino DM cannot be very
light, we can have a light sneutrino DM with mass below 100 GeV satisfying all
the current experimental constraints from cosmology, collider as well as
low-energy experiments. We also note that the supersymmetric inverse seesaw
mechanism with sneutrino as the lightest supersymmetric partner can have
enhanced same-sign dilepton final states with large missing transverse energy
(mET) coming from the gluino- and squark-pair as well as the squark-gluino
associated productions and their cascade decay through charginos. We present a
collider study for the same-sign dilepton+jets+mET signal in this scenario and
propose some distinctions with the usual cMSSM. We also comment on the
implications of such a light DM scenario on the invisible decay width of an 125
GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Theory of disk accretion onto supermassive black holes
Accretion onto supermassive black holes produces both the dramatic phenomena
associated with active galactic nuclei and the underwhelming displays seen in
the Galactic Center and most other nearby galaxies. I review selected aspects
of the current theoretical understanding of black hole accretion, emphasizing
the role of magnetohydrodynamic turbulence and gravitational instabilities in
driving the actual accretion and the importance of the efficacy of cooling in
determining the structure and observational appearance of the accretion flow.
Ongoing investigations into the dynamics of the plunging region, the origin of
variability in the accretion process, and the evolution of warped, twisted, or
eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in
the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres
Research in progress: report on the ICAIL 2017 doctoral consortium
This paper arose out of the 2017 international conference on AI and law doctoral consortium. There were five students who presented their Ph.D. work, and each of them has contributed a section to this paper. The paper offers a view of what topics are currently engaging students, and shows the diversity of their interests and influences
- …
