439 research outputs found

    Identification and correction of previously unreported spatial phenomena using raw Illumina BeadArray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A key stage for all microarray analyses is the extraction of feature-intensities from an image. If this step goes wrong, then subsequent preprocessing and processing stages will stand little chance of rectifying the matter. Illumina employ random construction of their BeadArrays, making feature-intensity extraction even more important for the Illumina platform than for other technologies. In this paper we show that using raw Illumina data it is possible to identify, control, and perhaps correct for a range of spatial-related phenomena that affect feature-intensity extraction.</p> <p>Results</p> <p>We note that feature intensities can be unnaturally high when in the proximity of a number of phenomena relating either to the images themselves or to the layout of the beads on an array. Additionally we note that beads neighbour beads of the same type more often than one might expect, which may cause concern in some models of hybridization. We highlight issues in the identification of a bead's location, and in particular how this both affects and is affected by its intensity. Finally we show that beads can be wrongly identified in the image on either a local or array-wide scale, with obvious implications for data quality.</p> <p>Conclusions</p> <p>The image processing issues identified will often pass unnoticed by an analysis of the standard data returned from an experiment. We detail some simple diagnostics that can be implemented to identify problems of this nature, and outline approaches to correcting for such problems. These approaches require access to the raw data from the arrays, not just the summarized data usually returned, making the acquisition of such raw data highly desirable.</p

    Racial differences in treatment and survival in older patients with diffuse large B-cell lymphoma (DLBCL)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diffuse large B-cell lymphoma (DLBCL) comprises 31% of lymphomas in the United States. Although it is an aggressive type of lymphoma, 40% to 50% of patients are cured with treatment. The study objectives were to identify patient factors associated with treatment and survival in DLBCL.</p> <p>Methods</p> <p>Using Surveillance, Epidemiology, and End Results (SEER) registry data linked to Medicare claims, we identified 7,048 patients diagnosed with DLBCL between January 1, 2001 and December 31, 2005. Patients were followed from diagnosis until the end of their claims history (maximum December 31, 2007) or death. Medicare claims were used to characterize the first infused chemo-immunotherapy (C-I therapy) regimen and to identify radiation. Multivariate analyses were performed to identify patient demographic, socioeconomic, and clinical factors associated with treatment and with survival. Outcomes variables in the survival analysis were all-cause mortality, non-Hodgkin's lymphoma (NHL) mortality, and other/unknown cause mortality.</p> <p>Results</p> <p>Overall, 84% (n = 5,887) received C-I therapy or radiation treatment during the observation period: both, 26%; C-I therapy alone, 53%; and radiation alone, 5%. Median age at diagnosis was 77 years, 54% were female, 88% were white, and 43% had Stage III or IV disease at diagnosis. The median time to first treatment was 42 days, and 92% of these patients had received their first treatment by day 180 following diagnosis. In multivariate analysis, the treatment rate was significantly lower among patients ≥ 80 years old, blacks versus whites, those living in a census tract with ≥ 12% poverty, and extra-nodal disease. Blacks had a lower treatment rate overall (Hazard Ratio [HR] 0.77; P < 0.001), and were less likely to receive treatment within 180 days of diagnosis (Odds Ratio [OR] 0.63; P = 0.002) than whites. In multivariate survival analysis, black race was associated with higher all-cause mortality (HR 1.24; P = 0.01) and other/unknown cause mortality (HR 1.35; P = 0.01), but not mortality due to NHL (HR 1.16; P = 0.19).</p> <p>Conclusions</p> <p>In elderly patients diagnosed with DLBCL, there are large differences in treatment access and survival between blacks and whites.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    Elusive Copy Number Variation in the Mouse Genome

    Get PDF
    Array comparative genomic hybridization (aCGH) to detect copy number variants (CNVs) in mammalian genomes has led to a growing awareness of the potential importance of this category of sequence variation as a cause of phenotypic variation. Yet there are large discrepancies between studies, so that the extent of the genome affected by CNVs is unknown. We combined molecular and aCGH analyses of CNVs in inbred mouse strains to investigate this question.Using a 2.1 million probe array we identified 1,477 deletions and 499 gains in 7 inbred mouse strains. Molecular characterization indicated that approximately one third of the CNVs detected by the array were false positives and we estimate the false negative rate to be more than 50%. We show that low concordance between studies is largely due to the molecular nature of CNVs, many of which consist of a series of smaller deletions and gains interspersed by regions where the DNA copy number is normal.Our results indicate that CNVs detected by arrays may be the coincidental co-localization of smaller CNVs, whose presence is more likely to perturb an aCGH hybridization profile than the effect of an isolated, small, copy number alteration. Our findings help explain the hitherto unexplored discrepancies between array-based studies of copy number variation in the mouse genome
    corecore