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Abstract Innate immunity normally provides excellent de-
fence against invading microorganisms. Acute inflammation
is a form of innate immune defence and represents one of the
primary responses to injury, infection and irritation, largely
mediated by granulocyte effector cells such as neutrophils
and eosinophils. Failure to remove an inflammatory stimulus
(often resulting in failed resolution of inflammation) can lead
to chronic inflammation resulting in tissue injury caused by
high numbers of infiltrating activated granulocytes.
Successful resolution of inflammation is dependent upon the
removal of these cells. Under normal physiological condi-
tions, apoptosis (programmed cell death) precedes phagocytic
recognition and clearance of these cells by, for example, mac-
rophages, dendritic and epithelial cells (a process known as
efferocytosis). Inflammation contributes to immune defence
within the respiratory mucosa (responsible for gas exchange)
because lung epithelia are continuously exposed to a multi-
plicity of airborne pathogens, allergens and foreign particles.
Failure to resolve inflammation within the respiratory mucosa
is a major contributor of numerous lung diseases. This review
will summarise the major mechanisms regulating lung inflam-
mation, including key cellular interplays such as apoptotic cell
clearance by alveolar macrophages and macrophage/neutro-
phil/epithelial cell interactions. The different acute and chron-
ic inflammatory disease states caused by dysregulated/
impaired resolution of lung inflammation will be discussed.

Furthermore, the resolution of lung inflammation during
neutrophil/eosinophil-dominant lung injury or enhanced reso-
lution driven via pharmacological manipulation will also be
considered.

Keywords Neutrophils . Eosinophils . Macrophages . Lung
inflammation . Lung diseases . Pro-resolutionmediators .

Apoptosis . ETosis . Efferocytosis

Introduction

Acute inflammatory responses are initiated by injury, infection
and irritation which, in turn, protect the host from systemic
infection and help to restore tissue homeostasis [1].
Inflammation therefore represents a crucial defence mecha-
nism that is protective and vital to health [2, 3]. Typically,
the molecular events and cellular interplays prevalent during
acute inflammatory responses are efficient at minimising
impending injury, infection or irritation, which leads impor-
tantly to restoration of tissue homeostasis and thus complete
resolution of the acute inflammatory response. However, if an
acute inflammatory response is mounted that is uncontrolled
in terms of magnitude or duration, it can lead to disease [1, 3].
In the lung, dysregulated acute inflammation can result in lung
injury contributing to pulmonary fibrosis that severely impairs
essential gas exchange processes. Therefore, numerous mech-
anisms exist, which tightly regulate the gravity and duration of
lung inflammation. If unresolved, acute lung injury (ALI) and/
or lung inflammation can progress to chronic inflammation,
which occurs in lung diseases such as acute respiratory dis-
tress syndrome (ARDS), asthma, cystic fibrosis (CF) and
chronic obstructive pulmonary disease (COPD) [1].

Pro-resolution of inflammation was previously regarded as
a passive process, with limited understanding of mechanisms
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regulating the resolution of inflammation. However, over the
years, substantial research in this field has identified inflam-
mation resolution as an active and highly regulated cellular
and biochemical process. It is now known that numerous mo-
lecular mediators of inflammation exist, including many pro-
and anti-inflammatory cytokines and chemokines, with atten-
uation of pro-inflammatory mediator effects assisting in the
successful ‘switching off’ of inflammation [4]. More recently,
several endogenous pro-resolving bioactive lipid mediators
(immunoresolvents) have been discovered such as lipoxins,
resolvins, protectins and maresins, which are heavily involved
in driving ‘programmed resolution’ that successfully termi-
nate inflammation [5–8]. Other key processes governing the
successful resolution of inflammation include the phagocytic
clearance of apoptotic cells [9, 10] during a process referred to
as efferocytosis that also results in the phagocytic cells,
switching phenotype from a pro-inflammatory cell to a more
anti-inflammatory/pro-resolution phenotype [10, 11]. Also,
pertinent to the lung mucociliary clearance of infective agents,
allergens, foreign particles and effete cells occur [12]. This
review encompasses the cellular mechanisms and chief bio-
chemical mediators involved in the resolution of lung inflam-
mation and repair of damaged tissues, with a specific focus on
neutrophil/eosinophil-dominant lung inflammation and phar-
macological approaches to drive resolution [13–16].

Cells of the innate immune system

Antigen-independent innate immunity provides the first line
of leukocytic defence against invading microorganisms dur-
ing which inflammation is an early key response to infection,
injury or irritation. Innate immune defence during lung in-
flammation involves several cell types and cellular interplay.
These include leukocytes such as polymorphonuclear
granulocytes (neutrophils, eosinophils, basophils) and agran-
ulocytes (monocytes, macrophages), lung epithelial/
endothelial cells, mast cells, natural killer (NK cells) and den-
dritic cells. These cells can influence the function of other cell
types, such as innate lymphoid cells [17] and lymphocytes
[18], which are not specifically covered in this current review.

Neutrophils

Neutrophils, accounting for 70 % of the circulating human
blood leukocytes, are short lived in the circulation surviving
for up to 7–10 h (although the precise length of time in the
circulation remains controversial; see Tak et al [19]).
However, during an inflammatory scenario or in response to
chemical stimuli, they can survive up to, or greater than, 48 h.
These cells, typically 12–15 μm in diameter, contain a distinct
multi-lobed nucleus and possess four different types of gran-
ules, primary (azurophilic), secondary (specific), gelatinase
and secretory. These granules contain >300 proteins which

are involved in several cell processes including migration,
adhesion and anti-microbial activity [20]. Neutrophils are very
versatile and upon inflammatory insult, rapidly migrate to the
foci of injury/infection, where they are often first on the scene
and help defend the host via phagocytosis, degranulation, gen-
eration of reactive oxygen species (ROS) or by releasing webs
of chromatin via neutrophil extracellular traps (NETs) gener-
ation to trap and kill microorganisms. Furthermore, there is
evidence that neutrophils can change from a pro-inflammatory
to an anti-inflammatory phenotype following a successful in-
flammatory response. In such an instance, neutrophils stop
producing and releasing pro-inflammatory mediators such as
leukotriene B4 (LTB4) and platelet-activating factor (PAF) and
start to produce and release pro-resolving mediators such as
pro-resolving bioactive lipids (e.g. lipoxins) which enhance
the resolution phase of inflammation [21], for a thorough re-
view of the pro-resolution properties exhibited by neutrophils
[see 22]. Once the neutrophil has fulfilled its physiological
function, they normally undergo apoptosis which retains
membrane integrity, thus preventing uncontrolled release of
noxious cellular contents and internalised microbes to the im-
mediate extracellular environment [23]. Apoptosis-specific
cell changes promote the recognition and uptake of neutro-
phils by phagocytes such as macrophages, dendritic cells and
epithelial cells. It is essential for the successful resolution of
inflammation that neutrophils are ‘switched off’, undergo ap-
optosis and are successfully cleared. If unresolved, acute in-
flammation can lead to chronic inflammationwhere mass neu-
trophil influx to a localised vicinity results in host tissue dam-
age. This can occur when excess neutrophils produce free
radical species during ROS generation, release proteolytic
and anti-microbial granule contents during de-granulation
and externalisation chromatin studded with nuclear, granu-
lar and cytosolic proteins with high anti-microbial proper-
ties during NET generation. Moreover, during hypoxic
conditions (1 % oxygen) which are commonly experienced
throughout inflammation, hypoxia-induced neutrophil sur-
vival is observed, mediated by hypoxia-inducible factor
(HIF)-1α-dependent nuclear factor kappa light chain en-
hancer of activated B cells (NF- B) activity and prolyl
hydroxylase 3 expression. Like lymphocytes and macro-
phages, evidence suggests that neutrophils can also exist
as a heterogeneous population exhibiting different pheno-
types [24, 25]. Interestingly, accumulating recent evidence
indicates that neutrophils, depending of the inflammatory
response, may be capable of leaving the vicinity of in-
flammatory site by a process termed reverse migration
[26–32]. Neutrophil-dominant inflammation is implicated
in a number of inflammatory lung diseases including
ALI/ARDS, CF, COPD, idiopathic pulmonary fibrosis
(IPF), bronchiectasis, atopic/non-atopic asthma and severe
asthma, during which neutrophil numbers are elevated
(neutrophilic asthma).
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Eosinophils

These cells make up <5 % of the circulating human blood
leukocytes and can survive for up to 12 h but if necessary have
the ability to prolong their life span for at least a week. They
are slightly larger than neutrophils with a diameter of 12–
17 μm, possess a bi-lobed nucleus and are easily identifiable
via Romanowsky staining (methylene blue and eosin). Like
neutrophils, eosinophils are loaded with granules in their cy-
toplasm; however, eosinophilic granules contain different
components such as eosinophilic cationic protein, major basic
protein, eosinophil peroxidase and eosinophil-derived neuro-
toxin, which are cytotoxic to airway epithelial cells. On arrival
to the site of injury/infection (especially parasitic infection),
eosinophils undergo degranulation which aids in removal of
the inflammatory stimuli circumventing further inflammation.
Eosinophils can also contribute to host defence via release of
eosinophil extracellular traps (EETs) composed of either mi-
tochondrial or nuclear DNA [33, 34]. These EETs contribute
to anti-microbial defence via release of mitochondrial DNA
that associates with eosinophil-derived granule proteins capa-
ble of capturing and killing microorganisms in vitro and in
vivo [33]. Eosinophils can also undergo apoptosis, which are
then cleared via phagocytosis by macrophages, modulated by
IL-5 [35]. Eosinophils are capable of displaying both pro-
inflammatory and anti-inflammatory phenotype and function.
Anti-inflammatory activities of eosinophils include an impor-
tant regulatory role during hypersensitivity reactions via eo-
sinophil peroxidase-mediated inactivation of LTB4, C4 and D4

[36]. However, eosinophil peroxidase can also exert pro-
inflammatory activities in areas of inflammation where mast
cells and eosinophils are both present, largely via extracellular
formation of active complexes formed between eosinophil
peroxidase and mast cell granules [37]. Anti-viral activity
has also been documented for human eosinophils and their
associated ribonucleases against respiratory syncytial virus
(in vitro) and for mice eosinophils and associated ribonucle-
ases against pneumonia virus of mice in vivo (for review, see
Rosenberg and Domachowske [38]). Furthermore, human and
mouse eosinophils are capable of displaying anti-viral activity
against parainfluenza 1 in the lung (a common respiratory
virus) [39]. Eosinophils are dominant during allergic airway
inflammation [40], including atopic/non-atopic asthma and
allergic rhinitis, and are known to be involved in the mainte-
nance and restoration of lung homeostasis.

Basophils

Basophils represent the rarest of the circulating human
granulocytes, and their granules contain a variety of sub-
stances including histamine, heparin, serotonin, neutral prote-
ases and hydrolases. Upon stimulation, they are capable of
releasing their granule contents and synthesis of mediators

including bioactive lipids and cytokines. Thus, upon exposure
to allergens, they become activated and rapidly degranulate,
which exaggerates inflammation during atopic/non-atopic
asthma and allergic rhinitis [41].

Monocytes/macrophages

Monocytes contain numerous granules smaller than those of
their granulocyte counterparts, which mostly contain lyso-
somal enzymes which aid in the destruction of internalised
phagocytosed microorganisms. In the absence of inflamma-
tion, monocytes are normally confined to the bone marrow
and blood. However, upon inflammatory insult, they rapidly
migrate to inflamed tissue and differentiate into large tissue
resident phagocytic macrophages. Depending on the microen-
vironment, macrophages can change their status to a variety of
phenotypes. Please note that for convenience, macrophages
have been classified into different phenotypes; this nomencla-
ture is not precise and the authors note that the macrophage is
plastic and can change depending on environment, origin and
activation status. For example, they can have a more pro-
inflammatory phenotype (often termed as M1 or classical
macrophages), anti-inflammatory phenotype (termed M2 or
alternative macrophages) or pro-resolving phenotype [11,
42, 43]. M1 switching can be induced by intracellular patho-
gens, bacterial cell wall components such as lipopolysaccha-
ride (LPS), lipoproteins and soluble mediators such as the
cytokines interferon gamma (IFNγ) and tumour necrosis fac-
tor (TNF), which, in turn, lead to release of various pro-
inflammatory cytokines/mediators (IL-1, IL-6, IL-8, TNF,
IFNγ, LTB4) exacerbating inflammation, as well as nitric ox-
ide (NO) generation which aids in efficient killing of micro-
organisms [44]. M2 switching can be induced by various par-
asites and fungal cells; immune complexes; apoptotic cells;
and soluble mediators including macrophage colony-
stimulating factor (M-CSF), IL-4, IL-10, IL-13 and
transforming growth factor beta (TGFβ) [45]. M2 macro-
phages shut down the release of pro-inflammatory stimuli
and release pro-repair and anti-inflammatory cytokines/
mediators such as IL-10, TGFβ and prostaglandin E2

(PGE2). Furthermore, M2 macrophages have enhanced
phagocytic capabilities, with their most important function
being the efficient clearance of apoptotic cells [46], which
contributes largely to the successful resolution of inflamma-
tion. During lung infection and injury, migration and retention
of monocyte and macrophage populations are implicated in
triggering and sustaining pulmonary inflammation [47].

Lung epithelial/endothelial cells

In the airways, the trachea, combined with main bronchi, con-
stitute proximal cartilaginous airways and are responsible for
the conduction of inhaled air. During breathing, the proximal
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pseudostratified epithelium participates in defence against en-
vironmental toxins and invading microorganisms.
Conversely, a more columnar epithelium is located in distal
airways, where high numbers of goblet and ciliated epithelial
cells are situated. Goblet epithelial cells secret mucous, which
provides lubrication to assist ciliated epithelial cells in sweep-
ing microorganisms, dust particles and effete cells away from
the lungs (mucociliary clearance). The microvascular pulmo-
nary endothelium and epithelial lining of the alveoli form the
foundation of the gas exchanging air-blood barriers in the
lung. This barrier is composed of three distinct compartments,
blood, interstitium and the alveolar space [48]. The alveolar
epithelium is made up of type-1 and type-2 alveolar cells
(pneumocytes), with gas exchange performed by type-1 cells
and excretion of pulmonary surfactant performed by type-2
cells, which maintains normal lung function by reducing sur-
face tension. Alveolar macrophages are also the most abun-
dant phagocytes present in alveolar space within the lung.
Owing to their large surface area and the constant onslaught
from microorganisms and particulates present in the air, lungs
have acquired effective mechanisms for the detection of mi-
crobes. In infants, developmental disorders in the extensive
interface where alveolar endothelial cells are directly opposite
alveolar epithelial cells can lead to severe respiratory compli-
cations. In mature lungs, irreparable changes to the structure
of the blood-gas interface contribute to fibrotic lung diseases
and pulmonary emphysema, whereas dysfunction in the lung
endothelial/epithelial cell barrier is a major contributor of ALI.
Moreover, in ALI/ARDS, extensive damage to the
endothelial/epithelial cell barriers causes leakage of edema
fluid and inflammatory cells into the alveolar spaces resulting
in hypoxemia and respiratory failure. In terms of reparative
capabilities, endothelial cells can facilitate epithelial repair in
the lung microenvironment [49].

Mast cells, NK cells and dendritic cells

Mast cells are thought to be involved in wound healing and
repair and are found in skin and mucosal/connective tissues,
where upon response to a pathogenic insult preferentially con-
centrate within mucosal/connective tissues to provide innate
immune defence. Mast cells (via degranulation) can release
potent inflammatory mediators including histamines, prote-
ases, chemotactic factors, cytokines and arachidonic acid me-
tabolites that impact upon the vasculature, smooth muscle,
connective tissue, mucous glands and other inflammatory
cells [50]. Like eosinophils and basophils, mast cells are im-
plicated in allergic airway inflammation, with mast cell num-
bers elevated in pulmonary alveoli and airways, as well as in
asthmatic lungs or in bronchial alveolar lavage (BAL) fluid
from patients with IPF and sarcoidosis [51]. Other cell types
involved in lung inflammation include NK cells and dendritic
cells. NK cells are cytotoxic lymphocytes and can play both

advantageous and disadvantageous roles during asthma,
COPD, influenza and tuberculosis. However, there remains a
paucity of knowledge as to how the functions of these cells are
regulated in the unique tissue environment of each condition
[52]. Dendritic cells are the messengers between the innate
and adaptive immune systems. In the lung, dendritic cells
create a cellular interphase between the external environment
and the microenvironment. Lung dendritic cells play signifi-
cant roles during the pathogenesis of asthma via regulation of
bronchial hyperreactivity, recruitment of eosinophils/mast
cells to localities of airway inflammation and induction of
hyperplasia in goblet cells [53].

Cell death

Cell death processes are tightly regulated to safeguard suc-
cessful resolution of inflammation. Nevertheless, dysregula-
tion of cell death commonly occurs hampering the pro-
resolution process. In the lung, numerous cell death processes
govern inflammation. Understanding the mechanisms that
regulate cell death in the lung will help enable identification
of novel therapeutic targets to limit/resolve inflammation and
restore homeostasis.

Apoptosis

Granulocyte apoptosis has been a subject of much interest
over recent decades, and there is strong evidence that failure
of inflammation resolution contributes to numerous chronic
inflammatory conditions and with its manipulation, therefore
offering potential novel therapeutic targets. Inflammatory
cells have the potential to be incendiary in the host tissue
environment and, in the absence of an appropriate inflamma-
tory ‘threat’, can trigger host tissue damage secondary to re-
lease of histotoxic mediators such as proteases and reactive
oxygen species. Perhaps one of the most critical mechanisms
for resolution and restoration of tissue homeostasis following
an acute inflammatory insult is the ability of accumulated
migratory granulocytes to undergo immunologically silent
programmed cell death, namely, apoptosis. This highly regu-
lated, energy-dependent and complex process involves the
coordinated destruction and packaging of inflammatory cell
contents for phagocytic clearance in a manner that does not
elicit a host immune response, facilitates healing, and pro-
motes and maintains self-tolerance by the adaptive immune
system to create immunological memory. In addition, this neat
packaging of cell contents prevents the leakage of pro-
inflammatory mediators and contains histotoxic weaponry,
including proteases, reactive oxygen species production and
lysozymes. Granulocyte apoptosis is a caspase-dependent pro-
cess that proceeds following activation of one of two major
pathways, the intrinsic and extrinsic [1, 54]. It has become
increasingly evident that the mutual exclusivity of these
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pathways is not as clear-cut as was previously assumed, and
there is a degree of cross talk between the molecular compo-
nent of their execution, with both ultimately dependent on the
actions of caspases to initiate cell suicide. Caspases, a family
of cysteine-aspartic proteases, are the critical intracellular me-
diators of apoptosis and are also implicated in inflammation
and necrosis, thus offering a promising target for pharmaco-
logical manipulation [55, 56].

The intrinsic, or mitochondrial, pathway occurs when the
balance of pro- and anti-apoptotic mediators of the Bcl-2 fam-
ily proteins tips in favour of cell death, which occurs in re-
sponse to DNA damage or endoplasmic reticulum stress. In
the mature granulocyte, the pro-apoptotic family members,
Bax, Bad, Bak and Bid, are suppressed by their anti-
apoptotic counterparts, Mcl-1, Bcl-xl and A1, thus maintain-
ing cell viability. In the presence of sufficient cellular stress,
they circumvent this suppression and translocate from cyto-
plasm to mitochondria, triggering development of mitochon-
drial outer membrane permeabilisation (MOMP). MOMP al-
lows mitochondrial molecules cytochrome C, Smac/
DIABLO, Omi/HtrA2 and serine proteases to enter the cyto-
sol, where cytochrome C interacts with Apaf-1 to form the
apoptosome, which is ultimately responsible for cell death
via the activation of pro-caspase 9. The resultant caspase 9
causes cleavage of the ‘executioner’—caspase 3, leading to
DNA fragmentation, cross-linking and degradation of intra-
cellular proteins and membrane receptor switch. Conversely,
apoptosis advancing via the extrinsic ‘death receptor’ pathway
occurs in response to stimulation by extracellular mediators,
primarily TNF, Fas ligand and tumour necrosis factor-alpha-
related apoptosis-inducing ligand (TRAIL) [57]. These inter-
cellular messengers activate receptors on granulocyte plasma
membranes—specifically TRAIL receptor (TRAIL-R), TNF
receptor 1 (TNFR1) and Fas receptor (FasR), which upon
binding with their corresponding ligand are prompted to coa-
lesce. Assemblages of membrane proteins bind with internal
adaptors, forming death domain proteins that attract clusters of
cytosolic pro-caspase 8. The interactions of these proteins
trigger an intracellular cascade, namely, the death-inducing
signalling complex (DISC) that culminates in autocatalytic
cleavage of pro-caspase 8, which then results in apoptosis of
the cell again via cleavage of caspase 3. Caspase 8 generated
in response to extracellular Fas ligand is the main executor of
cross talk between the intrinsic and extrinsic pathways, as its
release triggers MOMP via cleavage of Bid [58, 59].

Following caspase activation, nuclear DNA forms nucleo-
somes, dense packages of genetic material. Occurring simul-
taneously is the alteration of the plasma membrane receptor
profile. The pro-survival molecule suite, which includes
CD47 and CD31, is replaced by a milieu of ‘find-me’ and
‘eat-me’ signals that trigger recognition and stimulate uptake
of the dying cell by macrophages or other cells with phago-
cytic capacity [10, 60]. Find-me signals are released from

apoptotic cells which subsequently attract nearby phagocytes.
In mammals, several find-me signals have been identified in-
cluding fractalkine (CX3CL1), lysophosphatidycholine (lipid
mediator), sphingosine 1-phosphate and nucleotides including
adenosine triphosphate and uridine 5′ triphosphate [61–64].
Eat-me signals allow the specific recognition of apoptotic cells
via cell different cell surface changes which include exposure
of phosphatidylserine (PS) to the outer membrane leaflet, in-
tracellular adhesion moelecule-1 (ICAM1) epitope alteration,
exposure of calreticulin and alteration of cell surface charge
and glycosylation configurations (for review, see Gardai et al.
[65]). The best described and most evolutionarily conserved
of these eat-me signals is the externalisation of PS to the outer
membrane leaflet [66, 67], which along with ICAM3 and
annexin 1 promotes phagocytosis. Additionally, find-me sig-
nals such as nucleotides, fractalkine and lipid mediators attract
not only professional phagocytes but can also facilitate uptake
by neighbouring cells and other non-professional phagocytes
including bronchial epithelial cells [10, 68, 69]. In addition to
preventing direct, though inadvertent, damage to host tissues,
this mechanism of removal dampens the immune response
and encourages resolution, allowing normal tissue homeosta-
sis to resume. Apoptosis is an important clearance mechanism
for effete cells and for the successful resolution of lung inflam-
mation. Granulocyte apoptosis has been shown to be delayed
in lung disease, and specific induction of granulocyte apopto-
sis can enhance the resolution of lung inflammation (for in-
depth reviews, please refer to [1, 14]).

Other cell death processes in the lung

In direct opposition to its well-tempered counterpart (apopto-
sis), necrosis results in loss of membrane integrity and the
unrestrained release of intracellular contents following cell
trauma. The release of toxic damage-associated molecular pat-
terns (DAMPs) into the extracellular environment character-
istically results in an acute inflammatory response with in-
flammatory cell influx, paracrine effects on surrounding cells
with release of pro-inflammatory mediators and significant
potential for host tissue destruction [70, 71]. A variety of in-
sults, including infection, chemicals, physical trauma and nu-
tritional deficits, cause direct loss of membrane integrity—so-
called primary necrosis. In situations where there is a failure in
the timely and sufficient clearance of apoptotic cells by phago-
cytes, secondary necrosis occurs due to the inevitable disinte-
gration of the apoptotic cell membrane, which may result in a
late-phase inflammatory response, the nature of which is still
debated [10, 60, 68]. There is increasing recognition of the
importance of DAMPs in the propagation of the acute inflam-
matory response within the lung through interaction with
pathogen recognition receptors (PRRs) [72]. Their activation
promotes inflammation via transcription of pro-inflammatory
cytokines and enhances the anti-microbial response. There is
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growing evidence to suggest that secondary necrosis, the ne-
crotic fate of a cell following a failure of phagocytosis once
apoptosis has occurred, contributes to persistent inflammation
in a number of chronic conditions, and certainly evident that
necrosis in the context of hyperactive acute response can result
in significant long-term sequelae as a result of tissue damage
and aberrant remodelling.

In 2004, a novel cell death process distinctly separate to
necrosis and apoptosis was discovered when it was observed
that human neutrophils could generate NETs [73] for innate
immune defence. NETs are composed of decondensed nuclear
chromatin that is discharged to the extracellular environment in
a controlled manner. Additionally, neutrophils can release mi-
tochondrial DNA [74]; however, mitochondrial DNA is 100,
000 times less abundant on NETs than nuclear DNA [75].
NETs are characterised by the nuclear membrane being entirely
fragmented with most of the granules being dissolved, thus
allowing direct contact and mixing of nuclear, cytoplasmic
and granular components [76]. Studded on the DNA backbone
of NETs are nuclear, granule and cytosolic proteins. Nuclear
proteins include citrullinated histones and anti-microbial pep-
tides (AMPs) such as the cathelicidin, LL37; azurophilic
(primary) granule proteins such as neutrophil elastase (NE),
cathespin G, myeloperoxidase (MPO) and α-defensins; specif-
ic proteins from secondary and tertiary granules such as
lactoferrin and gelatinase, respectively; or cytosolic proteins
such as the cytosolic protein complex, calprotectin [73, 77].
The core histones H2A, H2B, H3 and H4 account for 70 %
of all NET-associated proteins [77]. Histone hypercitrullination
which mediates chromatin decondensation during NET forma-
tion is mediated via peptidylarginine deiminase 4 (PAD4) [78].

The formation of NETs is dependent upon generation of
ROS via activation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, actin filament polymerisation,
as well as requiring activation of protein kinase C (PKC) path-
ways upstream of NADPH oxidase [76, 79, 80]. NETs have
the ability to capture and kill both Gram-positive/negative
bacteria, viruses, fungi and larger parasites [73, 81–83]; how-
ever, it is now widely regarded that NETs are more efficient at
trapping microorganisms as opposed to killing. Having said
that, bacteria do have the ability to escape and degrade NETs
via numerous mechanisms, for example, polysaccharide for-
mation which causes electrochemical repulsion of AMPs or
DNAse generation aiding degradation of chromatin [84, 85].
This process was first termed NETosis [86] as it was thought
to be exclusive to neutrophils. However, this cell death path-
way is now commonly referred to as ETosis [87] and can be
found in a number of different immune cell types, as well as in
haemocytes of lower invertebrates [88]. The early origin of
ETosis helps explain some of its pathological effects in mam-
mals where ETosis can be viewed as a double-edged sword.

ETosis is implicated in a number of chronic lung inflam-
matory disorders, including ALI and ARDS, influenza

pneumonia, cystic fibrosis, asthma, COPD and tuberculosis.
A hallmark of infection-related ALI/ARDS and in sterile in-
jury is the activation and subsequent mass migration of neu-
trophils into the alveolar space, which is initiated by
chemokines released from macrophages, neutrophils and epi-
thelial cells [89]. Neutrophil activation and NET formation in
the alveolar space are initiated by a highly localised concen-
tration of stimulating factors. Injury to alveolar epithelial cells
increases permeability of the barrier between the alveolar
space and blood vessels, which also promotes the epithelium
to release pro-inflammatory IL-8. This can result in leakage of
edema fluid containing high infiltrating numbers of neutro-
phils into the alveolar space. Within the alveoli, NETs are
released in response to host-derived factors such as
granulocyte/macrophage colony-stimulating factor (GM-
CSF), complement factor 5a (C5a), activated platelets and
singlet oxygen. NETs then cause secondary epithelial cell
damage via release of NET proteins and ROS generation,
which results in chronic inflammation. Potent lung injury fac-
tors released by NETs include NE, which cleaves endothelial
cytoskeleton, as well as E-cadherin and VE-cadherin that in-
crease the permeability of the alveolar-capillary barrier [90].
Other NET-derived components such as cathespin G can de-
grade anti-inflammatory proteins via pro-inflammatory pro-
tein production, LL-37 promotes apoptosis in epithelial and
endothelial cells and ROS produced by MPO causes both
apoptosis and necrosis in epithelial cells [90]. Moreover, ex-
tracellular histones (H3 and H4) released from NETs are im-
plicated as pivotal effectors of C5aR- and C5L2-mediated
(C5a receptors) ALI in humans, rats and mice [91]. NETs
are also found in models of sterile injury such as
transfusion-related ALI (TRALI) [92]. NETs have been linked
to ALI in influenza pneumonitis where NETs caused lung
injury via association with alveoli in areas of tissue injury
[93]. NETs are found in the sputum of CF patients [94]. The
majority of extracellular DNA found in the sputum of CF
patients is in fact NET derived, as the DNA complexes are
consistent with neutrophil ETosis and share a similar protein
signature [95]. Extracellular DNA leads to an increase in spu-
tum viscosity that correlates with a high concentration of neu-
trophils and NET accumulation in CF airways that conse-
quently aids microbial colonisation, proliferation and biofilm
formation causing chronic inflammation correlating with in-
creased pulmonary obstruction [96, 97]. Yet, why more
ETosis is occurring in CF airways remains unclear.
However, it is likely that NETs are formed in response to host
bacteria, such as opportunistic Pseudomonas aeruginosa, one
of the main pathogens to colonise the CF lung which is also a
common pathogen known to induce NETs [97]. Both EETs
and NETs are found in the airways of human atopic asthma
patients in vivo [98], whereas NETs decorated with NE, his-
tone H1 and citrullinated histone H3 are found in sputum of
COPD patients [99, 100]. Interestingly, both Mycobacterium
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genotypes M. tuberculosis (cause of most types of tuberculo-
sis) and M. canetti induced NET formation and ROS
produc t ion in a t ime-dependen t manner [101] .
M. tuberculosis-induced NETs were decorated with key
ETotic markers such as histone H2A, H2B and NE and were
able to trap but not killM. tuberculosis [101]. Granulomas are
an important and hallmark feature of tuberculosis and are gen-
erally caused by mycobacterial or fungal infections. These
prominent structures represent a key immune response to for-
eign material that is too large to be cleared by other immune
defence processes. For an in-depth review of the role of
ETosis during lung inflammation, refer to Cheng and
Palaniyar [102]. Interestingly, there appears to be a link be-
tween NADPH oxidase activation, ETosis and apoptosis in
immune defence against infectious agents. This has been
highlighted by studies involving neutrophils obtained from
patients with chronic granulomatous disease (CGD; a rare
inherited disorder of NADPH oxidase) and mouse models of
CGD, where in both instances, the ETotic response is severely
diminished [76, 103]. Furthermore, following phagocytosis
(in vitro), neutrophil apoptosis is compromised in CGD suf-
ferers [104]. Failed resolution of inflammation in patients with
CGD can lead to a number of inflammatory lung conditions
including pneumonia, pulmonary fibrosis and lung abscesses,
and specifically, in CGD mice, ALI can result as a conse-
quence of impaired tryptophan catabolism (a superoxide-
dependent process) [105].

Additional cell death processes play important roles during
lung inflammation; these include autophagy and necroptosis.
Autophagy entails the intracellular degradation of cellular
components, which are then delivered to the lysosome for
enzymatic degradation. Autophagy can play opposing roles
during chronic lung inflammatory disorders and lung cancer.
An increase in autophagy markers, such as autophagosome
formation, and levels of LC3B-II (autophagosome-
associated protein) are found in the pulmonary epithelium
after induction of ALI in mice after extended exposure to
hyperoxia [106]. During tuberculosis, autophagy can assist
in the generation of anti-virulence factors [107], whereas dur-
ing influenza A, infection autophagy is induced with viral
replication dependent upon autophagosome formation [108].
Mitophagy (selective degradation of mitochondria via autoph-
agy) can, in certain instances, aggravate the severity of COPD
by activating additional cell death processes, whereas during
pulmonary hypertension, autophagy can regulate cell death
facilitating host defence [106]. Furthermore, autophagic deg-
radation and clearance of cilia (ciliophagy) result in COPD-
associated cilium dysfunction [109]. Impairment of autophagy
can escalate the severity of cystic fibrosis and idiopathic pul-
monary fibrosis, and in lung cancer, it can reduce carcinogen-
esis; yet it can also promote tumour cell survival. Therefore,
autophagy can control the effectiveness of certain cancer ther-
apies [106]. Conversely, necroptosis (programmed necrosis) is

known to augment lung inflammation in several murine
models. In a model of erythrocyte transfusion and LPS-
induced lung inflammation, necroptosis of lung endothelial
cells is induced via high mobility group box 1 (HMGB1)
protein [110]. Staphylococcus aureus toxins can induce
necroptosis via receptor-interacting protein kinases (RIP) 1
and 2 which bind to pro-necrotic mixed lineage kinase
domain-like (MLKL) protein via RIP1/RIP2/MLKL signal-
ling, which results in depletion of alveolar macrophages as
well as IL-1β expression leading to pulmonary damage
[111]. Necroptosis was also observed in bronchial epithelial
cells in vitro via induction by cigarette smoke, which also
triggered the release of DAMPs and pro-inflammatory cyto-
kines (IL-8, IL-6) [112]. In vivo, cigarette smoke caused neu-
trophilic airway inflammation as evidenced by increased the
number of neutrophils present in the BAL fluid, which was
significantly reduced by treatment with the necroptosis inhib-
itor, necrostatin-1 [112].

Efferocytosis

A critical process in the successful resolution on inflammation
is the efficient clearance of apoptotic cells by phagocytes dur-
ing a process termed efferocytosis. This process helps to limit
inflammation and maintain tissue homeostasis. Efferocytosis
ensures the swift removal of apoptotic cells before they lose
membrane integrity and release their histotoxic intracellular
contents to surrounding tissues, which would cause host tissue
damage and exacerbate inflammation. Apoptotic cells once
engulfed are contained within a large fluid-filed vesicle
termed an efferosome that fuses with lysosomes to form the
efferolysosome, which eventually digests the redundant cell.
Efferocytosis is typically performed by professional phago-
cytes such as macrophages or dendritic cells; however, this
process can also be performed by non-professional phago-
cytes such as epithelial cells and fibroblasts. Before phagocy-
tosis, apoptotic cells undergo characteristic morphological
changes such as cell shrinkage, membrane blebbing and
karyorrhexis, which enable the dying cell to be recognised,
engulfed and subsequently cleared. In most cases, phagocytes
engulf dying cells in their entirety, such is the case for macro-
phages for the clearance of apoptotic neutrophils [113].
However, in certain instances, such as when the target is too
large to be efficiently phagocytosed, multiple phagocytes can
work in concert by engulfing apoptotic cells in ‘bite-sized’
portions. Such a scenario is observed during efferocytosis per-
formed by fibroblasts in the absence of macrophages [114] .

Mechanisms

Recently reviewed by Poon et al., some of the key mecha-
nisms of the efferocytosis process include the release of vari-
ous find-me and ‘keep-out’ signals, as well as the presentation
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of various eat-me and ‘do not eat-me’ signals by apoptotic
cells [10]. During early apoptosis, dying cells attract phago-
cytes via the release of chemotactic factors. These find-me
signals can either be soluble or signal through submicron
membrane vesicles. Soluble factors include nucleotides that
are released from apoptotic cells through caspase-activated
pannexin 1 (PANX1) membrane channels [10]. Signalling
through submicron membrane ves ic les inc ludes
microparticle-associated molecules such as CX3 chemokine
ligand 1 (CX3CL1), ICAM3 and the Ca2+-dependent
phospholipid-binding protein annexin A1 [10]. Annexin A1
is released when membrane integrity is lost during late apo-
ptosis (secondary necrosis) and is known to promote recruit-
ment of monocytes via proteolytic processing of a dis-integrin
and metalloproteinase domain-containing protein 10
(ADAM10) [115] as well as promoting apoptotic cell engulf-
ment and clearance [115, 116]. Interestingly, apoptotic cells
also possess the ability to deter recruitment of pro-
inflammatory cells via release of keep-out signals, which
function as negative regulators of granulocyte migration. At
present, the glycoprotein lactoferrin is the only known keep-
out signal and is released from various apoptotic cell types,
which subsequently inhibits neutrophil migration in vitro and
in vivo [117] and eosinophil migration in vitro [118]. Various
cell surface eat-me signals help phagocytes distinguish viable
cells from apoptotic cells. The main eat-me signal exposed on
the surface of apoptotic cells is the membrane phospholipid
PS [66]. In viable cells, PS is confined to the inner membrane
via the transmembrane lipid transporter protein flippase.
However, during early-stage apoptosis, PS is translocated
from the inner to the outer membrane leaflet via the activity
of phospholipid scramblase. PS exposed on the surface of
apoptotic cells can be detected by phagocytes via several rec-
ognition mechanisms. Direct detection of PS occurs via dif-
ferent membrane receptors, including brain-specific angio-
genesis inhibitor 1 (BAI1) [119], stabilin-2 [120] and protein
family members of the T cell immunoglobulin domain (TIM),
specifically TIM1, TIM3 and TIM4 [121, 122]. Recognition
of PS via BAI1 results in rearrangement of the cytoskeleton to
aid phagocytic engulfment, which is mediated via the engulf-
ment and cell motility protein 1 (ELMO1)-dedicator of
cytokinesis-180 (DOCK180)-Ras-related C3 botulinum toxin
substrate (RAC) (ELMO1-DOCK180-RAC) complex [119].
Stabilin-2 initiates apoptotic cell uptake via PS binding medi-
ated by interactions with the engulfment adapter protein
(GULP) and thymosin β4 (regulates actin polymerisation)
[123, 124], whereas TIM4 predominantly functions as a teth-
ering protein for PS where phagocytic engulfment is facilitat-
ed via signalling of associated proteins [125]. Aside from
these genuine PS membrane receptors, PS can also be bound
by bridging molecules including milk fat globule-endothelial
growth factor 8 (MFG-E8), protein S and Gas6 which are
ligands recognised by their cell surface receptors on

phagocytes, specifically the αvβ3 integrin family of receptors
in the case of MFG-E8 and the Tyro3-Axl-Mer (TAM) family
of receptors in the case of protein S and Gas6 [126–128].
Apoptotic cells can also expose calreticulin (endoplasmic re-
ticulum resident protein 60) on their surface, which can serve
as an additional eat-me signal. For example, translocation of
calreticulin from the endoplasmic reticulum to the plasma
membrane occurs during induction of apoptosis accompanied
by endoplasmic reticulum stress in cancer cells, which are in
turn subsequently cleared by phagocytes via CD91 (low-den-
sity lipoprotein-receptor protein) detection of calreticulin
[129, 130]. In contrast to eat-me signals, cells can also expose
do not eat-me signals on their cell surface. This is the case for
viable cells that can, under certain physiological circum-
stances, translocate PS to their outer membrane leaflet.
However, these viable cells avoid phagocytic uptake by expo-
sure of do not eat-me signals such as CD31, CD47 and CD46
[10].

Regulation

Phagocytic functions can be augmented by exposure or treat-
ment with glucocorticoids (GCs). GCs can also stimulate mac-
rophages to switch to an anti-inflammatory phenotype (M2)
where they shut down release of pro-inflammatory cytokines
and simultaneously release anti-inflammatory cytokines (IL-
10, TGFβ, IL-1ra), helping to promote resolution of inflam-
mation and tissue repair. GCs are a class of corticosteroids
which are a class of steroid hormones regularly used for the
treatment of inflammatory diseases due to their potent anti-
inflammatory properties. Cortisol is an important endogenous
GC heavily involved in modulation of various metabolic, ho-
meostatic, immunologic and cardiovascular functions.
However, under certain chronic inflammatory conditions, en-
dogenous levels of cortisol are not enough to suppress such
inflammatory insults. In such instances, synthetic (exogenous)
GCs such as dexamethasone and hydrocortisone (which can
be more potent than endogenous GC counterparts) can be
administered to aid and accelerate the resolution phase of in-
flammation. With regard to lung inflammation, GCs are com-
monly used limit inflammation during lung diseases such as
asthma and ALI/ARDS.

Macrophage efferocytosis of neutrophils is enhanced in the
presence of GCs such as dexamethasone and hydrocortisone
in vitro [131]. Dexamethasone-treated macrophages also dis-
play structural reorganisation of the cytoskeleton and an in-
crease in cell motility, both essential for efficient phagocytosis
[132]. Furthermore, dexamethasone augmented the expres-
sion of active RAC in macrophages, a key signalling protein
involved in a variety of cellular functions, including phagocy-
tosis as well as cell motility, mitosis and wound healing [132].
GCs induce protein S-dependent efferocytosis through Mer
receptor tyrosine kinase signalling, a member of the TAM
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receptor tyrosine kinase family [133, 134]. TAMs initiate sig-
nals that regulate cellular function as well as dictating the
binding capacity and phagocytic clearance of apoptotic cells.
TAM-deficient mice exhibit impaired efferocytosis capabili-
ties, which are associated with several autoimmune diseases.
At site of inflammation, GCs can stimulate Mer expression on
phagocytes [131]. Inhibition of Mer-mediated efferocytosis in
mice exacerbated LPS-induced lung injury, which was re-
duced by Mer-signalling upregulation via TNFα protease
inhibitor-0 (TAPI-0), a specific inhibitor of Mer cleavage
[135]. This highlights that Mer-mediated efferocytosis is a
critical process which can modulate lung pathophysiology. It
has been established that proteolytic cleavage from the cell
membrane of phagocytes can downregulate Mer after expo-
sure to pro-inflammatory stimuli such as LPS and bleomycin,
with inhibition of this proteolytic cleavage successfully
achieved via TAPI-0 blockade, which subsequently inhibits
downregulation of Mer and augments efferocytosis in mouse
models of LPS and bleomycin-induce lung injury [136, 137].
Deciphering the molecular mechanisms underpinning
efferocytosis and its regulation via interaction with GCs will
help facilitate the identification of novel therapeutic targets to
promote the resolution of inflammation and tissue repair in the
lung, as well as other organs. It is important to note that the
efficacy of GCs during resolution if inflammation is depen-
dent upon environmental milieu. In vitro GCs can stimulate
eosinophil apoptosis; however, they are also known to delay
neutrophil apoptosis. Yet during hypoxia, the GC-induced and
pro-inflammatory cytokine-induced pro-survival effects upon
neutrophil survival are lost [138].

Another way GCs are thought to exert and modulate their
anti-inflammatory capabilities is via the expression and func-
tion of the 37-kDa protein annexin A1 (also known as
lipocortin 1), a downstream effector molecule [139].
Annexin A1 signals through a G-protein coupled receptor
(GPCR) known as formyl peptide receptor 2 (FPR2; ALXR
in humans), which is also the receptor for the bioactive pro-
resolving lipid lipoxin A4 [140]. Annexin A1 binds to acidic
membrane phospholipids in a Ca2+-dependent manner and is
expressed in high levels in the cytoplasm of resting cells. In
human neutrophils, >60 % of cytoplasmic annexin A1 is
stored in gelatinase granules [141]. Following cell activation
(e.g. in response to inflammatory stimuli), rapid translocation
of annexin A1 to the outer membrane leaflet takes place,
where this find-me signal is then secreted via different cell-
specific molecular mechanisms [139]. Endogenous annexin
A1 liberation from apoptotic neutrophils and GC (dexameth-
asone)-treated macrophages enhances macrophage
efferocytosis of neutrophils in vitro [142, 143]. Levels of
annexin A1 expression from circulating neutrophils and
monocytes are increased in healthy volunteers after GC ad-
ministration [144], with expression levels of annexin A1 also
modulated during disease. In Cushing’s disease (associated

with elevated levels of cortisol), leukocytes exhibit markedly
raised levels of intracellular annexin A1, and in Addison’s
disease (associated with reduced levels of cortisol), leukocytes
exhibit markedly lower levels of intracellular annexin A1
compared to healthy controls [145]. Innate immune cell re-
lease of annexin A1 following GC treatment can stimulate
neutrophil apoptosis and macrophage efferocytosis and inhibit
neutrophil transendothelial migration [139]. In vivo data from
a mouse model of acute inflammation highlight annexin A1 as
a key regulator during natural and GC-induced resolution of
inflammation [146]. Nonetheless, the mechanism of GC reg-
ulation of annexin A1 remains largely unclear. Incidentally,
efferocytosis can also be augmented in vivo in the murine lung
and in alveolar macrophages from COPD patients by treat-
ment with statins (cholesterol-lowering drugs), specifically
by treatment with lovastatin which enhances efferocytosis
via RhoA inhibition (cytoskeleton regulator) [147].

Successful resolution of lung inflammation

Efferocytosis performed by resident lung phagocytes gov-
ern the successful resolution of lung inflammation and
regulate normal lung structure. Professional phagocytes in-
clude alveolar macrophages, interstitial lung macrophages
and lung dendritic cells, whereas non-professional phago-
cytes include lung epithelial cells such as alveolar and
bronchial epithelial cells. Defective efferocytosis which re-
sults in an increased number of apoptotic cells is implicat-
ed in a number of lung diseases including asthma, ALI,
CF and COPD and is well reviewed by [148, 149].
Furthermore, highly specialised bioactive lipids play key
roles during the resolution phase of inflammation.

Professional lung phagocytes

Alveolar macrophages comprise the most abundant popula-
tion of professional phagocytes within the alveolar space
where they can make up 90–95 % of the cell population from
healthy BAL fluid. These phagocytes possess vast
phagolysosomal capacity which serves to kill ingested mi-
crobes. Apoptosis of alveolar macrophages which have
ingested Streptococcus pneumonia is essential for the killing
and clearance of these bacteria, which contribute to resolution
in a mouse model of pulmonary infection [150, 151].
Although alveolar macrophages are capable of phagocytosing
a diverse array of injurious agents, at rest, rates of alveolar
macrophage efferocytosis are somewhat lower than those of
other tissue resident macrophages [152]. Defects in alveolar
macrophage efferocytosis are attributable to several factors
including diminished adhesion and via SP-A and SP-D (effi-
cient regulators of macrophage function) activation of trans-
membrane receptor signal inhibitory regulatory protein alpha
(SIRPα) [153]. However, these efferocytosis defects are
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overcome via recruitment of mononuclear phagocytes during
acute inflammatory scenarios such as acute pulmonary in-
flammation [153]. In contrast to circulating monocytes, den-
dritic cells and tissue resident macrophages, alveolar macro-
phages possess numerous apoptotic cell recognition receptors,
which imply that these cells are extremely responsive to apo-
ptotic cell death in the alveolar space [154]. Alveolar macro-
phages highly express all three TAM receptors, with blockade
of these receptors shown to further suppress efferocytosis but
not phagocytic binding [152]. The lungs can also play host to
elevated numbers of interstitial macrophages, commonly ob-
served in smokers and COPD patients. Although the
efferocytosis capabilities of interstitial lung macrophages re-
main largely unclear, they appear to play a key role in promot-
ing the pathogenesis of cigarette smoke-induced emphysema
in mice via TNF and IL-6 release [155]. Within the lung, there
are two dendritic cell subsets, and it has been demonstrated, in
the murine lung, that the CD103+ dendritic cell subset facili-
tates efferocytosis and presents apoptotic cell-associated anti-
gens to CD8+ T cells [156]. Similar to efferocytosis capabili-
ties of interstitial lung macrophages, there is also a paucity of
investigations upon the efferocytosis capabilities of human
lung dendritic cells, which is an area that also deserves more
attention.

Non-professional lung phagocytes

Recognition and subsequent efferocytosis of eosinophils by
human bronchial and alveolar epithelial cells have been re-
ported in vitro, which were augmented by dexamethasone
treatment [157, 158]. Recognition of apoptotic eosinophils
was found to be both lectin- and integrin-dependent [157]
with apoptotic cell engulfment involving αvβ3-, CD36-,
αvβ5- and PS receptor-mediated events [158]. These findings
therefore imply a non-passive role for the airway epithelium
during eosinophilic-dominant inflammation in asthma. More
recently, in transgenic mouse models of allergic airway in-
flammation, the Ravichandran group were able to demonstrate
RAC1-dependent efferocytosis of airway epithelial cells by
bronchial epithelial cells, which resulted in liberation of anti-
inflammatory cytokines [159] (see Table 1 for an overview of
anti-inflammatory cytokines and associated bioactivities).
Incidentally, inducible deletion of RAC1 expression in
mouse airway epithelial cells resulted in impaired
efferocytosis and generation of an atypical anti-
inflammatory cytokine profile in bronchial epithelial cells
[159]. Yet, of present, there remains a distinct lack of inves-
tigations attempting to manipulate efferocytosis capabilities
in lung epithelial cells in current models of airway inflam-
mation. Facilitation of such investigations could help un-
earth novel therapeutic approaches for the treatment of var-
ious inflammatory lung diseases.

Pro-resolving bioactive lipids

Lipoxygenase (LOX)-dependent enzymatic conversion of
polyunsaturated fatty acid (PUFA) substrates to PUFA-
derived mediators is another important biochemical process
which is key to modulating inflammation [5, 160]. PUFAs
are released from the cell membranes of activated cells such
as neutrophils, monocytes/macrophages, lymphocytes and eo-
sinophils, then are enzymatically converted to specialised pro-
resolution lipid mediators, which vary in structure and func-
tion [161]. These pro-resolving lipid mediators include
lipoxins (A4 and B4), D- and E-series resolvins, protectins
and maresins and are active from picogram to nanogram
scales. These bioactive lipids often possess dual anti-
inflammatory and pro-resolution bioactivities (see Table 2
for overview), which are excellently reviewed by the Serhan
group [21, 162, 163]. In clinic, pharmacological inhibitors
including those that target certain lipoxygenases are used
due to their ability to suppress adverse events which accom-
pany inflammation; however, these inhibitors can also impair
endogenous production of other bioactive lipids [164–166].
Contrastingly, aspirin and the glucocorticoid dexamethasone
can initiate endogenous anti-inflammatory pathways via acti-
vation of the lipoxin A4 receptor AXLR/formyl peptide recep-
tor like-1 receptor (FPRL1) [140], a GPCR which is now
termed AXLR/FPR2 [167]. These pro-resolving bioactive
lipids are implicated in a number of inflammatory lung
diseases, including asthma, cystic fibrosis, interstitial lung
disease, aspirin-exacerbated respiratory disease, COPD
and emphysema [161].

Lipoxins and resolvins

At sites of inflammation, the PUFA arachidonic acid (ADA)
can be metabolised to prostaglandins and leukotrienes (such
as LTB4), but it is also converted to a family of pro-resolving
bioactive lipids termed lipoxins, which can suppress
leukotriene-induced inflammation [168]. Presently, lipoxins
are the most studied family of pro-resolution lipids and their
levels considerably increase during the resolution phase of
inflammation [5]. During airway inflammation, enzymatic hy-
drolysis via neutrophil 5-LOX and epithelial 15-LOX activity
leads to lipoxin A4 and B4 biosynthesis [4]. Additional lipoxin
A4 and B4 biosynthesis can occur via platelet and neutrophil
interactions (via platelet 12–LOX) such as in the vasculature
[169] as well as by various cell types including neutrophils,
eosinophils and alveolar macrophages, albeit to a lesser extent
[5, 169, 170]. As well as ADA, additional PUFAs are present
at sites of inflammation such as docosahexaenoic acid (DHA)
and eicosapentaenoic acid (EPA), which can be enzymatically
converted to D- and E-series resolvins, respectively. During
vascular inflammation, DHA is converted by aspirin-
acetylated endothelial cell-derived cyclooxygenase-2 (COX-
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2) via neutrophil LOX activity, which leads to hydrolysis of
D-series resolvins [161]. In a similar inflammatory scenario,
EPA is converted to E-series resolvins by aspirin-acetylated
endothelial cell-derived COX-2, where biosynthesis of E-
series resolvins involves direct transformation of unstable in-
termediates of EPA by activated leukocytes [161]. The GPCR
AXLR/FPR2 serves as the receptor for lipoxin A4 and

resolvin D1 [171, 172], which can also be activated by
annexin A1 via glucocorticoid induction [140]. Humans ex-
press ALXR/FPR2 in leukocytes and tissue resident cells
[171] with receptor expression modulated by local inflamma-
tory mediators. Resolvin D1 also binds to another GPCR,
namely, GPR32, which is also known as the resolvin D1 re-
ceptor (DRV1) and expressed by leukocytes [173]. However,

Table 1 Anti-inflammatory
bioactivities of various cytokines Cytokine Main source(s) Major anti-inflammatory bioactivities

IL-1ra Monocytes/macrophages, T cells,
B cells and dendritic cells

Specifically inhibits the activity of pro-inflammatory IL-1α
and IL-1β

IL-2 TH cells Modulates cellular and humoral responses during chronic
inflammation, increases T cell proliferation, lymphokine
secretion and augments expression of MHC class II
molecules

IL-4 T cells (TH2), B cells, mast cells
and basophils

Inhibits generation of monocyte-derived pro-inflammatory
cytokines IL-1, IL-6, IL-8, TNF and MIP-1α; decreases
macrophage cytotoxic activity and NO production;
stimulated IL-1ra synthesis; augments MHC class II
expression on B cells; and promotes B cell, T cell and
mast cell development

IL-6 T cells, B cells, neutrophils,
monocytes/macrophages,
PMN leukocytes and fibroblasts

Inhibits pro-inflammatory TNF, IL-1, GM-CSF, IFNγ and
MIP-2 generation and stimulates synthesis of
glucocorticoids and IL-1ra

IL-10 Monocytes/macrophages,
T cells (TH2) and B cells

Inhibits generation of monocyte/macrophage-derived
pro-inflammatory TNF, GM-CSF, MIP-1α, MIP-2α,
IL-1, IL-6, IL-8 and IL-12 and also attenuates
pro-inflammatory cytokine generation in neutrophils
and mast cells

IL-11 Stromal cells, fibroblasts,
epithelial cells and
osteoblasts

Inhibits generation of pro-inflammatory IL-1 and TNF
generation from macrophages and stimulates TH2
cell responses

IL-13 T cells (TH2) Inhibits generation of pro-inflammatory IL-1β, IL-6, IL-8
and TNF generation by monocytes and augments
differentiation and proliferation of monocytes and
B cells

IL-22 T cells, NK cells and dendritic
cells,

Induces proliferative and anti-apoptotic pathways and
production of AMPs which serve to block tissue
destruction and support tissue repair and modulates
tissue responses during intestinal inflammation

IL-27 T cells, monocytes, neutrophils,
NK cells, mast cells
and bronchial epithelial cells

Regulates T cell responses and differentiation and limits
pro-inflammatory cytokine production

IL-35 Regulatory B and T cells Stimulates T cell proliferation and anti-inflammatory IL-10
and TGFβ generation

IL-37 Macrophages and epithelial cells Decreases generation of pro-inflammatory cytokines

IL-38 PBMCs Decreases generation of IL-8 and T cell cytokines

TGFβ T cells, monocytes/macrophages,
neutrophils, platelets,
alveolar epithelial/endothelial
cells and fibroblasts

Inhibits leukocyte adhesion and monocyte/macrophage
pro-inflammatory cytokine generation and promotes
wound healing/angiogenesis

IFNα Monocytes/macrophages, PMN
leukocytes, plasmacytoid
dendritic cells, alveolar epithelial
cells and fibroblasts

Induces anti-inflammatory IL-1ra and IL-10 generation
and inhibits pro-inflammatory IL-1, IL-8 and TNF
generation

IL-1ra interleukin-1 receptor agonist, TH T helper,MHCmajor histocompatibility complex,MIP-1αmacrophage
inflammatory protein-1 alpha, NO nitric oxide, PMN polymorphonucleated, AMPs anti-microbial peptides,
PBMCs peripheral blood mononucleated cells
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Table 2 Specialised
bioactive lipids which
promote the resolution of
inflammation

Bioactive
lipid

Main
source

Major anti-inflammatory and pro-resolution bioactivities

Lipoxins ADA

Lipoxin A4 Neutrophils reduce chemotaxis/recruitment/transendothelial/epithelial migration, epithelial
cell interactions, number of apoptotic neutrophils, O2− generation and degranulation

Monocytes stimulate chemotaxis/adhesion and reduce peroxynitrite generation

Macrophages enhanced efferocytosis of neutrophils

Eosinophils reduce migration/chemotaxis and generation of IL-5 and eotaxin

NK cells reduce cytotoxicity and increase granulocyte apoptosis

Dendritic cells reduce generation of IL-12

Epithelial cells reduce the release of IL-6 and IL-8

Endothelial cells reduce ROS generation and VEGF-induced migration

Other decreases vascular leakage and adherent capabilities of leukocytes

Lipoxin B4 Leukocytes modulate the adherence and motility of neutrophils/monocytes and inhibit
neutrophil infiltration and stimulate macrophage recruitment

D-resolvins DHA

Resolvin D1 Neutrophils reduce recruitment and transmigration

Macrophages stimulate/augment phagocytosis of apoptotic cells and allergens, induce
M2 macrophage phenotype and reduce LPS-induced TNF release

Other reduces resolution interval, oxidative stress, pro-inflammatory cytokines in
BAL fluid and levels of prostaglandins/leukotrienes and augment microbial clearance

Resolvin D2 Leukocytes reduce neutrophil infiltration and leukocyte-endothelial cell interactions

Resolvin D3 Leukocytes reduce neutrophil transmigration and augment macrophage
phagocytosis/efferocytosis

Resolvin D4 Leukocytes reduce neutrophil infiltration and augment macrophage efferocytosis of
neutrophils and phagocytic clearance of Staphylococcus aureus

Other augments fibroblast efferocytosis of neutrophils

E-resolvins EPA

Resolvin E1 Neutrophils reduce O2− generation and transendothelial/epithelial migration

Monocytes decrease cell number

Macrophages augment efferocytosis of neutrophils

Eosinophils/lymphocytes reduce recruitment

Dendritic cells reduce migration and IL-12 generation

Other modulates the production of chemokines/cytokines and stimulates anti-apoptotic
signals and reparative processes in inflamed tissues

Resolvin E2 Leukocytes modulate neutrophil chemotaxis, augment phagocytosis and generation of
anti-inflammatory cytokines, efficiently downregulate the surface expression of integrins
and reduce responses to PAF

Resolvin E3 Neutrophils reduce infiltration

Protectins DHA

Protectin D1 Neutrophils reduce infiltration, transmigration and TNF/IFNγ generation

Macrophages modulate function and stimulate efferocytosis of PMN leukocytes

Other modulates chemokine/cytokine production and migration of T cells and reduces
eosinophil chemotaxis/adhesion

Maresins DHA

Maresin 1 Neutrophils reduce numbers in peritonitis exudates

Macrophages augment phagocytic capabilities

Other reduces PMN leukocyte transendothelial cell migration and dust-induced cytokine
production in bronchial epithelial cells and aids tissue regeneration

Source: [193, 194]

ADA arachidonic acid, O2− superoxide anion radical, VEGF vascular endothelial growth factor, EPA eicosapentaenoic
acid, DHA docosahexaenoic acid, BAL bronchial alveolar lavage, PAF platelet-activating factor, PMN
polymorphonucleated
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due to lack of GPR32 mobilisation from human neutrophils,
the pro-resolution activities of resolvin D1 are brought about
primarily by ALXR/FPR2 signalling pathways, which have
confirmed that mice are lacking the ALXR/FPR2 receptor
[174]. Resolvin E1 can bind to additional GPCRs, namely,
the chemokine receptor-like 1 (CMKLR1) receptor and
LTB4 receptor 1 (BLT1) expressed by polymorphonucleated
(PMN) leukocytes [175].

Protectins and maresins

Protectins are generated via a 15-LOX-dependent manner
which catalyses the conversion of DHA to protectin D1 via
an epoxide intermediate [176]. Additionally, aspirin can initi-
ate protectin biosynthesis from DHA via COX-2 acetylation
[177]. The pro-resolving bioactions of protectin D1 are known
to be cell-specific; therefore, it is likely that such interactions
are mediated by one or more specific receptors. However,
protectin 1-specific receptors remain to be identified [161].
Somewhat more recently, maresins (derived from macro-
phages) have been discovered, which are another family of
pro-resolving bioactive lipids [178]. Akin to protectins and
D-series resolvins, maresins are also derived from DHA.
However, biosynthesis of maresin 1 occurs via a novel epox-
ide intermediate, which also enhances the conversion of mac-
rophages from an M1 to M2 phenotype, with M2 macro-
phages able to produce elevated levels of this pro-resolving
lipid mediator from the epoxide intermediate compared to M1
macrophages [179]. Importantly, in terms of pro-resolution,
maresin 1 is also able to increase macrophage efferocytosis
and aid tissue regeneration [178, 180]. Identification of
maresin 1-specific receptors is yet to transpire; however, it is
apparent that specific GPCRs are involved [180].

Bioactive lipids in lung inflammation

Impaired generation of these pro-resolving lipid mediators
during airway inflammation can lead to chronic inflammatory
lung diseases. Decreased lipoxin formation has been de-
scribed in severe/uncontrolled asthma, cystic fibrosis,
aspirin-exacerbated respiratory disease and scleroderma-
interstitial lung disease [181–184]. During severe/
uncontrolled asthma, dysregulated expression of lipoxin bio-
synthetic genes is partly responsible for the decreased produc-
tion of lipoxins (see review by Levy et al. [185]). Elevated
levels of DHA are found in the airway mucosa of heathy
individuals; however, during asthma and cystic fibrosis, mu-
cosal levels of DHA are reduced [186]. Resolvins E1 and D1
can enhance the resolution of allergic airway inflammation in
mouse models of asthma [187, 188]. Resolvin E1 reduced the
numbers of macrophages, eosinophils and lymphocytes pres-
ent in BAL fluid as well as improving airway hyperreactivity
and airway mucus metaplasia postinhalation of methacholine

in mice [189]. Specifically, resolvin E1 enhances the resolu-
tion of allergic airway inflammation via reduction in IL-6, IL-
17 and IL-23 production in the murine lung, with pro-
resolution assisted via increased generation of IFNγ and
lipoxin A4 in the lungs of mice treated with resolvin E1
[189]. Recently, resolvin D4 has been identified in human
tissues and confirmed to have potent pro-resolving activities
during murine S. aureus infections [190, 191]. However, the
precise role of resolvin D4 during lung inflammation remains
to be established. Akin to lipoxin levels during severe/
uncontrolled asthma, a reduction in protectin D1 levels is also
observed during acute asthma exacerbations [192]. Protectin
D1 can also reduce allergic airway responses in a mouse mod-
el of asthma where intravenous administration of protectin D1
(prior to aeroallergen challenge) results in attenuation of eo-
sinophil infiltration and pro-inflammatory cytokine release
[192]. Furthermore, postallergen challenge (once pulmonary
inflammation has been established), protectin D1 is able to
exert pro-resolution properties which accelerate the resolution
of allergic airway inflammation [192]. Taken together, the
above evidence indicates that these bioactive lipids are key
effectors of pro-resolution circuits during lung inflammation
and that impairment in their endogenous levels contributes to
several inflammatory lung diseases. For thorough review of
the roles played by pro-resolution bioactive lipids during lung
inflammation, refer to [161].

Dysregulated/impaired resolution of lung inflammation

Neutrophil-dominant inflammation

As the most abundant cells, and in many ways the bluntest
instruments of the immune armoury, it is perhaps unsurprising
that neutrophilic inflammation is a hallmark of numerous in-
flammatory lung conditions. Furthermore, the lungs are prime
sites for inflammation and injury as neutrophils persist in the
lung far longer than other organs [195]. The first responders to
both endogenous and exogenous stimuli, their role in acute
disorders, are without question, yet they are also implicated in
the pathogenesis of numerous chronic conditions, suggesting
a failure of the normal mechanisms by which resolution pro-
ceeds. Below, we use several demonstrative conditions to il-
lustrate the mechanisms of neutrophilic inflammation, resolu-
tion and development of chronicity.

Pneumonia

As a significant burden of morbidity and mortality both within
the UK and the wider world, pneumonia is the acute inflam-
matory response to infection of the lower respiratory tract that
is visible on a chest X-ray. It occurs in response to a variety of
pathogens, most commonly bacteria and viruses, and is usu-
ally triggered by recognition of conserved ‘foreign’ receptors.
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Where the host response is successful in containing and
engulfing the responsible pathogen, infection remains local-
ised and the lung may heal without sequelae. Acute failure of
this process results in disseminated infection, which may ulti-
mately lead to death. In the intermediate to long term, failure
of successful sequestration and resolution predisposes to em-
pyema, abscess formation and bronchiectasis. Despite better
understanding of the underlying mechanisms of inflammation
and injury, the mainstay of treatment for pneumonia remains
anti-microbials. Unfortunately, there remain a subset of pa-
tients in whom even a combination of host defence and anti-
biotics fail to control infection and who go on to develop
multi-organ failure (see below). In recent years, there has been
more interest in exploring the role of modulating the immune
response in severe pneumonia, and numerous different drugs
have shown some potentials in improving outcomes.

Streptococcus pneumoniae is the most commonly implicat-
ed pathogen in community-acquired pneumonia (CAP) and
can result in a spectrum of disease severity. Streptococcal in-
fection is associated with dense neutrophilic inflammation and
activation of the coagulation cascade, via the thrombin recep-
tor, proteinase-activated receptor 1 (PAR-1). Numerous PAR-1
antagonists have been developed, and animal models suggest
that suppression of coagulation activation via this pathway can
reduce neutrophil airway load, inflammatory cytokine produc-
tion and alveolar leak without compromising bacterial clear-
ance [196]. Furthermore, proof of principal research suggests
that existing anti-platelet agents well established in the man-
agement of cardiovascular disease may yet improve outcomes
in pneumonia by reducing activation of the coagulation cascade
and thereby progression to ALI and ARDS [197]. Activated
protein C (APC) is an endogenous anti-inflammatory and anti-
coagulant chemokine that is implicated in the prevention of
disseminated infection and source control. It has recently been
highlighted that in animal models of streptococcal pneumonia,
overexpression of APC reduces bacterial spread to other organs
and neutrophilic inflammation at the primary infection site
[198]. As well as exploration of the pathways involved in the
acute inflammatory response, there has been growing interest
in drugs with an established role in the management of chronic
lung diseases, such as macrolides. Macrolides have long been
in favour as they exhibit both anti-bacterial and anti-
inflammatory properties and are useful in conditions where
bacterial colonisation is a hallmark, including diffuse pan-bron-
chiolitis, cystic fibrosis and bronchiectasis. A recent pilot study
highlighted a trend towards reduced circulating pro-
inflammatory cytokine levels in patients with CAP treated with
macrolides vs. those treated with other classes of anti-micro-
bials, particularly at 5-7 days postinfection [199]. In the past
decade, it has been increasingly recognised that as well as re-
ducing lipid burden and modifying cardiovascular disease,
HMG Co-A reductase inhibitors (statins) have hitherto unap-
preciated anti-inflammatory effects that are potentially

harnessable for management of inflammatory disease. A recent
trial suggested that atorvastatin reduced cough severity in stable
bronchiectasis with associated increase in apoptotic neutrophils
seen in sputum, and there is renewed interest in their role in
modulating acute inflammatory conditions [200]. A recent sys-
tematic review examined a number of studies exploring the role
of statins in CAP and concluded that they modulate neutrophil
response, reduce circulating cytokine burden and potentially
impact mortality [201].

Neutrophil longevity is a key determinant of the inflammato-
ry response and is an obvious target in the search for novel anti-
inflammatory agents. In the setting of infection, the challenge is
the safe depletion of neutrophil number to a level that is able to
ameliorate short- and long-termmorbidities without compromis-
ing host defence and predisposing to systemic infection. There is
evidence in numerous acute and chronic lung conditions, includ-
ingCAP, that failure of timely neutrophil apoptosis contributes to
morbidity [202]. Cyclin-dependent kinase inhibitors (CDKis)
are a group of drugs that are being extensively researched for
their ability to arrest cell cycle progression and induce apoptosis
even in terminally differentiated cells such as neutrophils via
downregulation of Mcl-1, and there are now several studies
which demonstrated their potential as safe and effective modu-
lators of inflammation [203–205].

ARDS

Multi-organ dysfunction syndrome (MODS) is a frequently
fatal condition caused by an overwhelming inflammatory insult
that results in a paradoxically unhelpful aggressive mucosal
response. ARDS is the respiratory component of this disorder
and results from a pathological reaction known as diffuse alve-
olar damage, which occurs secondary to rampant neutrophilic
inflammation [206]. There are many causes of ARDS, includ-
ing sepsis, shock, trauma and gastric aspiration [207, 208].
Progression to ARDS is a marker of severe sepsis and is asso-
ciated with poor outcomes. Therapy forMODS remains largely
supportive, but there is growing interest in the role of immune
modulation as an adjunct to anti-biotic or other therapy to
dampen the hyperactive immune response that ultimately leads
to severe impairment of gas exchange and respiratory failure.
Mortality in ARDS correlates with neutrophil number and
levels of circulating pro-inflammatory cytokines, suggesting
that harnessing the inflammatory response may be the key to
improving outcomes [209, 210].

Despite ongoing controversy, glucocorticoids remain the
best studied anti-inflammatory strategy in ARDS. There is
some evidence to suggest that given early in disease course,
intravenous steroids reduce requirement for mechanical ven-
tilation, length of ITU stay and improve oxygenation, with a
modest effect on mortality [211–214]. Such success is, how-
ever, only likely to outweigh potential complications in the
setting of vigilant surveillance for nosocomial infection and
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eschewal of neuromuscular blockade due to the potential com-
plications of steroid treatment. Furthermore, it has been sug-
gested that if left to later time points, i.e. >14 days postonset,
steroid administration may cause a paradoxical increase in
mortality [211]. Consequently, glucocorticoid therapy remains
to be proven as an effective therapy for ARDS and is not
recommended for treatment unless it is known to be secondary
to a steroid-sensitive insult. Early studies in animal models
suggest that macrolide anti-biotics may demonstrate efficacy
in management of ARDS [215, 216]. Although this is sup-
ported by an observational study that highlights a trend to-
wards reduced mortality with macrolide treatment, the evi-
dence remains insufficiently robust to support their use as a
routine management option [217, 218]. Perhaps almost as
enlightening as those therapies that have demonstrated prom-
ise are those which despite good biochemical rationale have
failed to prove clinically efficacious. Despite the known role
of cyclo-oxygenase-derived metabolites in sepsis and its se-
quelae, use of non-steroidals has historically been demonstrat-
ed not to lead to a reduction in sepsis-associated ARDS [219].

Cystic fibrosis

CF is the most common life-limiting autosomal recessive condi-
tion in Caucasians, with an incidence of 1 in 2500. Caused by
loss of function mutations of cystic fibrosis transmembrane con-
ductance regulator (CFTR), an epithelial chloride channel, it is a
heterogenous multi-system inflammatory disorder of which the
major clinical manifestations are severe, progressive bronchiec-
tasis and exocrine pancreatic insufficiency. The classical patho-
physiological explanation for CF lung disease is the ‘low-vol-
ume hypothesis’, whereby abnormal airway surface electro-
chemical gradients secondary to loss of CFTR result in increased
uptake of water and extracellular cations [220]. The resultant
dehydration of airway surface liquid promotes mucus hyperse-
cretion, inhibits mucociliary clearance and disables cationic host
defence peptides, leading to incessant cycles of sinopulmonary
infections that eventually progress to chronic inflammation with
airway remodelling. Once structural lung disease has developed
in CF, it is rare for it to regress, and consequently, there is a
desperate need to develop effective early management options
to reduce long-term morbidity [221].

In recent years, there has been a move to explore the role of
aberrant immune function in CF patients, as it is evident that
there are non-CFTR determinants of (lung) disease severity and
numerous hints of abnormal inflammatory responses. The un-
usual susceptibility of CF patients to ‘low-virulence’ patho-
gens, such as P. aeruginosa and Burkholderia cepacia, in-
creased incidence of allergic airway disease, and growing evi-
dence of a ‘CF-related enteropathy’ and systemic inflammation
are to name but a few [222–224]. Despite decades of research,
until recently, there has been very little progress in development
of new treatment options for CF, although promising drugs

directly restoring the CFTR function have recently become
available for a small subset of patients [225]. For the remainder
of the CF population, perhaps the best hope lies in the devel-
opment of safe and effective anti-inflammatory agents that can
be used synergistically with anti-biotic therapies to prevent the
establishment of chronic inflammation and airway damage.

A number of groups have demonstrated intrinsic failure of
the innate immune system in CF, and debate continues over
whether this is a result of a hitherto unappreciated role of
CFTR in neutrophil function or secondary to a chronic inflam-
matory environment in CF adults. Delayed neutrophil apopto-
sis, aberrant phagolysosomal destruction of Pseudomonas and
excess IL-8 production have all been described in CF patients
and offer an array of therapeutic targets [223, 226, 227]. As
discussed above, there is much hope that CDKis can offer a
novel approach to immune modulation in inflammatory dis-
orders as their role in managing non-malignant disorders is
explored. There is preliminary evidence that CDKis can cor-
rect delayed apoptosis in CF neutrophils, offering hope of
correcting the inflammatory response and perhaps increasing
the efficacy of antimicrobials in potentiating clearance of
established airway pathogens [227]. Indeed, with develop-
ment of novel water-soluble CDK inhibitors, the option of
nebulised therapy remains open and may reduce systemic ef-
fects whilst concentrating efficacy. As well as a paradoxical
failure to clear pathogens, the persistence of neutrophils in the
CF airway results in excess PMN-derived proteases, which
not only damage respiratory epithelia directly but also reduce
the efficiency of phagocytic clearance [228, 229].

Conventional anti-inflammatory strategies have historically
been trialled in CF patients but remain limited by significant
adverse effects, and they remain out of favour in routine clinical
practice [230, 231]. There has been little exploration of the role
of ‘topical’ traditional anti-inflammatories such as nebulised
non-steroidal anti-inflammatory drugs (NSAIDs), although this
route may offer a safe and more effective opportunity to amelio-
rate lung inflammation whilst minimising systemic effects [232].
Inhaled corticosteroids are generally reserved for those patients
with concurrent airway hyperreactivity as they demonstrate a
more steroid-responsive airway inflammatory infiltrate. Several
groups have demonstrated increased LTB4 levels in the CF air-
way, and there has been some success in using montelukast, a
leukotriene receptor antagonist well established in the manage-
ment of asthma, to reduce respiratory symptoms in CF patients
[233, 234]. Perhaps unsurprisingly, given the prevalence of mi-
crobial colonisation, macrolides have a long history in CF lung
disease. Their role is generally accepted to be related to both their
anti-inflammatory properties as well as delayed anti-microbial
effects, which reduce pathogen burden [235–238].
Unfortunately, there is recent evidence to suggest that long-
term macrolide use is associated with the increasing incidence
of multi-resistant atypical mycobacterial infections in CF pa-
tients, which may ultimately limit their use [239]. One of the
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problems with novel agent development is the protracted period
from bench to bedside, and as such, there is great interest in
exploring alternative uses for drugs with well-established safety
and tolerability profiles. Statins, long favoured for their role in
serum lipid modulation, are now known to exhibit broader anti-
inflammatory properties, and the potential implications of this
are currently being explored in a variety of conditions. IL-8 is
known to be abundant in CF serum, and it has recently been
demonstrated that fluvastatin is able to reduce IL-8 levels and
may ultimately help to suppress systemic inflammation [240].

Eosinophil-dominant inflammation (asthma)

Eosinophils are important during allergic airway inflamma-
tion. The combined injurious effects resulting from high num-
bers of infiltrating eosinophils, delayed eosinophil apoptosis
and impaired efferocytosis can cause chronic inflammatory
lung disease, such as asthma. Asthma is a spectrum of condi-
tions defined by the common pathology of reversible airway
obstruction and hypersensitivity of the respiratory mucosa to
environmental antigens. Most commonly, it occurs as part of
an allergic syndrome of atopic disorders, though may occur in
isolation. Asthma patients develop sensitivity to environmen-
tal antigens such as animal dander and plant material and on
exposure to those antigens, develop a type 1 allergic response
resulting in bronchoconstriction, wheeze, cough and mucus
hypersecretion that lead to airflow limitation.

Affecting approximately 10 % of UK adults, asthma is a
common disorder of multi-factorial origins, with research indi-
cating that both genetics and the environment have a significant
role to play. In predisposed individuals, ‘normal’ environmen-
tal antigens transmigrate through the airway epithelia and are
presented to naïve T cells, which trigger activation of IgE pro-
duction by B cells. IgE interacts with receptors on the surface
of tissue resident mast cells, and further exposure to the antigen
results in IgE cross-linkage with cell activation. The resultant
mast cell degranulation causes release of mediators including
histamine, LTB4, IL-8 and IL-10 and TNF, precipitating an
acute inflammatory response. The late-phase asthmatic re-
sponse classically occurs 6–9 h after antigen exposure and
occurs secondary to the persistent secretion of cytokines, e.g.
IL-5, GM-CSF and IL-3, which promote eosinophil migration,
persistence and longevity in the lungs and form the bass of
persistent airway inflammation in asthma patients.

The mainstay of asthma treatment is glucocorticoids, gener-
ally administered as inhaled preparations, which blunt the in-
flammatory response and trigger eosinophil apoptosis. This ther-
apy, with adjunct bronchodilators, is sufficient to control symp-
toms in the majority of patients but lacks subtlety and is signif-
icantly limited by toxicity. Perhaps unsurprisingly, there remains
a subset of patients who fail to respond to this approach and have
persistently uncontrolled symptoms that may ultimately lead to
airway remodelling. Consequently, there is a need for novel,

specific inhibitors of eosinophilic inflammation in the lung,
which can sufficiently control symptoms and display minimal
systemic toxic effects [241]. There has been good success with
the use of adjunct leukotriene receptor antagonists in the man-
agement of moderate-severe asthma, which selectively inhibit
the pro-inflammatory effects of leukotrienes, highlighting that
the principle of targeted therapies is sound [242].

Delayed eosinophil apoptosis and thereby persistence in
the airway remains a core pathological feature of asthma and
is one of the targets of steroid therapy. Recent in vitro and
murine studies have demonstrated that as in neutrophils,
CDK inhibitors are able to induce apoptosis of both circulat-
ing and inflammatory eosinophils via downregulation of Mcl-
1, although the significance of this in the clinical setting re-
mains unclear [243–245]. A recent study examining novel
modulators of eosinophil apoptosis has highlighted that hy-
drogen peroxide induces cell death and accelerates resolution
of airway inflammation in a caspase-dependent manner, as
well as accelerating recovery of lung function [246]. As pre-
viously discussed, in recent years, there has been much em-
phasis on the role of endogenous lipid mediators of resolution,
e.g. lipoxins, resolvins and protectins, and the potential role
they may play in ameliorating the harmful response in inflam-
matory conditions [69]. Resolvin D1, one such mediator, and
its counterpart aspirin-triggered resolvin D1 have been shown
to significantly reduce airway eosinophilia and mucus hyper-
secretion via reduction of IL-5 degradation [188]. Lipoxin A4

has been reported to downregulate eosinophil responses via
the suppression of activation by GM-CSF [247]. Its function-
ally related, though structurally distinct counterpart lipoxin
B4, promotes resolution of allergic resolution in upper and
lower airways via reduced eosinophil chemotaxis and mast
cell degranulation, emphasising the potential for therapeutic
harnessing of these pathways in eosinophilic airway disorders
[248]. Flavones are a recently described group of polypheno-
lic compounds with potential anti-inflammatory and anti-
malignant properties, which have been the subject of much
research interest. The flavone wogonin has been shown to
modulate granulocyte apoptosis via suppression of Mcl-1
and CDK-9, both in vivo and in vitro, therefore highlighting
a potential role for flavones in atopic disorders [249–251].

Conclusion

In the lung, prompt resolution of acute inflammatory responses
occurs regularly, aiding to preserve a healthy state within the
host. In most cases, this process is instigated by neutrophils, but
in certain scenarios, eosinophils can dominate; where in either
case, these granulocytes respond to noxious respiratory stimuli
such as airborne pathogens, allergens and foreign particles. The
outcome of acute inflammation in the lung is regulated by a
balance between the presence of different sets of mediators and
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specific receptors. Thesemediators and receptors either serve to
exacerbate the inflammatory response, which can lead to
chronic lung inflammation and the onset of diseases such as
ARDS, CF, COPD and asthma, or they can dampen inflamma-
tion and contribute to returning the lung to a healthy state via
pro-resolution and pro-reparative processes. We have
attempted to report the current understandings with regard to
mechanisms central to controlling the resolution of lung in-
flammation and injury. Clearly, enhanced efferocytosis of apo-
ptotic neutrophils/eosinophils performed by anti-inflammatory
and/or pro-resolution macrophages, who in turn shut down
their release of pro-inflammatory stimuli and increase their re-
lease of pro-resolution/reparative mediators, remains a key pro-
cess for successful resolution of inflammation and repair. More
recently, however, it has become evident that specialised bio-
active lipid mediators belonging to the lipoxin, resolvin,
protectin and maresin families can also modulate inflammation
by contributing to the pro-resolution process. The biological
actions of pro-resolving lipids are stereospecific, receptor-
mediated and extremely potent even at picogram and nanogram
concentrations [161]. Additionally, these pro-resolving lipids
selectively interact with key cell types involved in innate im-
mune defence, where they can have cell-type specific actions
upon neutrophils, macrophages and endothelial cells [161]. In
the lung, such actions include termination of leukocyte
infiltration; return to normal vascular permeability via
concomitant reduction in pulmonary edema, neutrophil
apoptosis, non-inflammatory infiltration of monocytes/
macrophages and macrophage efferocytosis of such neu-
trophils; and macrophage removal of respiratory patho-
gens and necrotic remnants. These actions all assist in
the successful resolution of lung inflammation and injury
to return the lungs to normal homeostasis and health.
Further identification of mediators and the mechanisms
by which they contribute to resolution of lung inflamma-
tion will help provide novel therapeutic strategies for the
treatment of lung disease and injury.
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