226 research outputs found

    Cost Comparison between Electronic Money Transfer Channel and Traditional Money Transfer Channel: A Study on Commercial Bank in Bangladesh

    Get PDF
    Electronic banking plays a pivotal role in the economic development of a country. Due to immense advances of Information and Communication Technology (ICT), it certainly introduced new dimension for the global banking community. Attempts are made to find out the total user cost of electronic money transfer that is a segment of electronic banking. To conduct this research, primary and secondary data are used and to compile these data various statistical tools are applied. Efforts are also made to make a comparison between the total user cost of electronic money transfer and that of the traditional money transfer. This research conveys that user cost of electronic fund transfer channels is less than traditional fund transfer channels due to sophisticated technology adopted by commercial banks. Keywords: Electronic Fund Transfer, Traditional Fund Transfer, Physical Effort

    PLANNING FOR AUTOMATED OPTICAL MICROMANIPULATION OF BIOLOGICAL CELLS

    Get PDF
    Optical tweezers (OT) can be viewed as a robot that uses a highly focused laser beam for precise manipulation of biological objects and dielectric beads at micro-scale. Using holographic optical tweezers (HOT) multiple optical traps can be created to allow several operations in parallel. Moreover, due to the non-contact nature of manipulation OT can be potentially integrated with other manipulation techniques (e.g. microfluidics, acoustics, magnetics etc.) to ensure its high throughput. However, biological manipulation using OT suffers from two serious drawbacks: (1) slow manipulation due to manual operation and (2) severe effects on cell viability due to direct exposure of laser. This dissertation explores the problem of autonomous OT based cell manipulation in the light of addressing the two aforementioned limitations. Microfluidic devices are well suited for the study of biological objects because of their high throughput. Integrating microfluidics with OT provides precise position control as well as high throughput. An automated, physics-aware, planning approach is developed for fast transport of cells in OT assisted microfluidic chambers. The heuristic based planner employs a specific cost function for searching over a novel state-action space representation. The effectiveness of the planning algorithm is demonstrated using both simulation and physical experiments in microfluidic-optical tweezers hybrid manipulation setup. An indirect manipulation approach is developed for preventing cells from high intensity laser. Optically trapped inert microspheres are used for manipulating cells indirectly either by gripping or pushing. A novel planning and control approach is devised to automate the indirect manipulation of cells. The planning algorithm takes the motion constraints of the gripper or pushing formation into account to minimize the manipulation time. Two different types of cells (Saccharomyces cerevisiae and Dictyostelium discoideum) are manipulated to demonstrate the effectiveness of the indirect manipulation approach

    Principles for Designing Green, Lean, and Smart Microfactories: Chicken as a Model

    Get PDF
    Industrial revolutions have gone through four phases: steam, electricity, electronics, and Industry 4.0. Through all these four industrial revolutions, efficiency, productivity, quality, and automation have been greatly improved. However, the manufacturing processes created by humans have had disastrous consequences on the environment leading to a gigantic “climate change” problem. To mitigate climate change, engineers, and manufacturers all over the world have stepped up the research into cradle-to-cradle designs and sustainable manufacturing practices inspired by the designs and value cycles in nature. Bio-inspired designs have been gaining momentum to create products and manufacturing methods that are eco-friendly. All manufacturing (of a fruit, an organism such as a human baby) in nature happens in microfactories such as a womb, a leaf, a flower, or a chicken oviduct whose products are eggs. The product (egg) and the manufacturing process (chicken oviduct) are both green (eco-effective), lean (built with minimal resources), and smart (sensors and Internet of Things). Using a chicken as a model, this book chapter presents a set of metrics for green, lean, and smart attributes, which engineers can use to design products and microfactories

    Evaluation of Crystallographic Texture in SS316L Steel by Ultrasonic Signal Analysis

    Get PDF
    An attempt has been made to evaluate crystallographic texture in AISI 316L austenitic stainless steel through the analysis of ultrasonic signals. Results of ultrasonic signal analysis and birefringence effect were compared with orientation distribution function (ODF) of the material (macrotexture) evaluated using conventional X-Ray diffraction. In polycrystalline aggregates, ultrasonic wave velocities were strongly affected by crystallographic texture. In this work, 70% rolled steels of AISI 316L stainless steel was annealed isothermally at temperatures 450oC to 750oC at an interval of 50oC with holding time of 30 minutes at each temperature. Ultrasonic longitudinal and transverse velocities were measured in each annealed sample. Power spectrum of the windowed ultrasonic signal as well as peak shift of the shear wave signal were analyzed and co-related with the texture data. It was seen that power spectrum analysis of windowed signal could be a potential tool for evaluation of crystallographic texture in polycrystalline materials

    Image-guided Placement of Magnetic Neuroparticles as a Potential High-Resolution Brain-Machine Interface

    Get PDF
    We are developing methods of noninvasively delivering magnetic neuroparticles™ via intranasal administration followed by image-guided magnetic propulsion to selected locations in the brain. Once placed, the particles can activate neurons via vibrational motion or magnetoelectric stimulation. Similar particles might be used to read out neuronal electrical pulses via spintronic or liquid-crystal magnetic interactions, for fast bidirectional brain-machine interface. We have shown that particles containing liquid crystals can be read out with magnetic resonance imaging (MRI) using embedded magnetic nanoparticles and that the signal is visible even for voltages comparable to physiological characteristics. Such particles can be moved within the brain (e.g., across midline) without causing changes to neurological firing

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics

    Get PDF
    The panoply of microorganisms and other species present in our environment influence human health and disease, especially in cities, but have not been profiled with metagenomics at a city-wide scale. We sequenced DNA from surfaces across the entire New York City (NYC) subway system, the Gowanus Canal, and public parks. Nearly half of the DNA (48%) does not match any known organism; identified organisms spanned 1,688 bacterial, viral, archaeal, and eukaryotic taxa, which were enriched for harmless genera associated with skin (e.g., Acinetobacter). Predicted ancestry of human DNA left on subway surfaces can recapitulate U.S. Census demographic data, and bacterial signatures can reveal a station’s history, such as marine-associated bacteria in a hurricane-flooded station. Some evidence of pathogens was found (Bacillus anthracis), but a lack of reported cases in NYC suggests that the pathogens represent a normal, urban microbiome. This baseline metagenomic map of NYC could help long-term disease surveillance, bioterrorism threat mitigation, and health management in the built environment of citie
    • …
    corecore