323 research outputs found

    Saline aquifer CO2 storage : a demonstration project at the Sleipner Field : Work Area 5 (Geophysics) : gravity modelling of the CO2 bubble

    Get PDF
    A principal aim of the SACS project is to monitor the injected CO2 by geophysical methods and to develop a robust and repeatable monitoring and verification methodology for future CO2 sequestration operations. This report evaluates the applicability of microgravity surveys as a means of monitoring the future subsurface distribution and migration of the Sleipner CO2 bubble. Time-lapse seismic data acquired in 1999, after 2.3 MT of CO2 injection, show an exceptionally clear image of the CO2 bubble, characterised by very high reflection amplitudes. The outer envelope of the amplitude anomaly roughly defines an elliptical cylindrical ‘bubble envelope’, ~ 225 m high, with a major axis of ~ 1500 m oriented NNE and a minor axis of ~ 600 m. Gravity modelling was based on a number of scenarios. Two ‘in situ’ scenarios assume that the CO2 is entirely contained within the bubble envelope. The 1999 and 2001 in situ models assume respectively that 2.3 MT and 4MT of CO2 are contained within the envelope. Two migration scenarios are also modelled. The first assumes that 2.3MT of CO2 migrate vertically upwards into the overlying caprock succession to between depths of 375 and 600 m. The second migration model looks further ahead to the situation where 3 x 107 m3 (~ 10.5 – 21.0 MT depending on the density) of CO2 have been injected, and migrate laterally beneath the caprock at the top of the reservoir. Results depend strongly on the assumed density of the injected CO2 at reservoir conditions, which is subject to significant uncertainty. Only one, poorly-constrained, reservoir temperature measurement of 37 ° C is available. A density-depth profile based on this suggests that the density of CO2 in the reservoir is ~ 700 kgm-3. However the possibility of significantly lower densities cannot be discounted and modelling also includes a lower density case of 350 kgm-3. The 1999 and 2001 in situ cases produce anomalies which would be barely detectable if the higher density of CO2 is assumed. With the lower density however anomalies should be readily detectable with a modern seabed gravimeter. The vertical migration scenario indicates that large-scale vertical migration into the caprock, to depths where densities would be unequivocally lower, would be readily detected. The lateral migration scenario, whereby a single thin layer of CO2 migrates beneath the top reservoir seal, produces small anomalies which may be locally detectable but with insufficient resolution to enable effective migration mapping. However if lateral migration is via several layers, beneath intra-reservoir shales, then anomalies should be more usefully measurable. Obtaining time-lapse gravimeter readings directly above the bubble would appear to offer the best chance of obtaining useful information. Coupled with geometric information provided by the time-lapse seismic data, the gravity should be able to discriminate between the low and high CO2 density scenarios. This would provide important constraints on future reservoir modelling and also the volume estimates based on the seismic velocity pushdown effect. Related to this, gravity data would offer the potential to provide independent verification of the amount of CO2 sequestered. In addition gravimetric surveys above the bubble could provide an effective ‘early warning’ of major caprock breaching

    Magma–Carbonate Interaction Processes and Associated CO2 Release at Merapi Volcano, Indonesia: Insights from Experimental Petrology

    Get PDF
    There is considerable evidence for ongoing, late-stage interaction between the magmatic system at Merapi volcano, Indonesia, and local crustal carbonate (limestone). Calc-silicate xenoliths within Merapi basaltic-andesite eruptives display textures indicative of intense interaction between magma and crustal carbonate, and Merapi feldspar phenocrysts frequently contain individual crustally contaminated cores and zones. In order to resolve the interaction processes between magma and limestone in detail we have performed a series of time-variable de-carbonation experiments in silicate melt, at magmatic pressure and temperature, using a Merapi basaltic-andesite and local Javanese limestone as starting materials. We have used in-situ analytical methods to determine the elemental and strontium isotope composition of the experimental products and to trace the textural, chemical, and isotopic evolution of carbonate assimilation. The major processes of magmacarbonate interaction identified are: i) rapid decomposition and degassing of carbonate, ii) generation of a Ca-enriched, highly radiogenic strontium contaminant melt, distinct from the starting material composition, iii) intense CO2 vesiculation, particularly within the contaminated zones, iv) physical mingling between the contaminated and unaffected melt domains, and v) chemical mixing between melts. The experiments reproduce many of the features of magmacarbonate interaction observed in the natural Merapi xenoliths and feldspar phenocrysts. The Carich, high 87Sr/86Sr contaminant melt produced in the experiments is considered as a pre-cursor to the Ca-rich (often “hyper-calcic”) phases found in the xenoliths and the contaminated zones in Merapi feldspars. The xenoliths also exhibit micro-vesicular textures which can be linked to the CO2 liberation process seen in the experiments. This study, therefore, provides well-constrained petrological insights into the problem of crustal interaction at Merapi and points toward the substantial impact of such interaction on the volatile budget of the volcano

    Strontium isotope systematics of experimentally produced melts: understanding magma-carbonate interaction at Merapi volcano, Indonesia

    Get PDF
    There is considerable evidence for ongoing, late-stage interaction between the magmatic system at Merapi volcano, Indonesia, and local crustal carbonate. In order to resolve the interaction processes in detail, we have performed a series of time-variable carbonate dissolution experiments in silicate melt using Merapi basaltic-andesite and local limestone as starting materials, at magmatic pressure and temperature. Major element profiling of the experimental products has identified strongly contrasting compositional domains of glass: a Ca-enriched zone containing up to 36 wt% CaO, and an unaffected, Ca-normal zone containing 8 to 10 wt% CaO. To investigate the systematics of strontium isotopes and trace elements (TE) during carbonate assimilation, we have used micro-sampling and high-precision analytical techniques to measure 87Sr/86Sr ratios and TE concentrations over the magma-carbonate and intra-melt interfaces in two of our experimental products. The isotope variation between the different glass compositions is distinct, with 87Sr/86Sr ranging from 0.705641 in the Ca-normal glass to 0.706532 in the Ca-enriched glass. The upper end of this range is considerably more radiogenic than the range reported for Merapi whole rock volcanic products (0.70501 to 0.70583, Gertisser & Keller, 2003 J Pet, 44, 457-489). Our data hence support a model of assimilation of crustal carbonate with highly radiogenic 87Sr/86Sr (0.708799) at Merapi volcano. Given that the starting materials used in the experiments have markedly distinct 87Sr/86Sr values we here present new and detailed insights about the behaviour of Sr isotopes during carbonate assimilation, with a focus on the processes that operate across the carbonate-melt interface and the intra-melt transitions. Strontium is a reliable tracer of magma-crust interaction and so we anticipate that our results will significantly help to quantify our comprehension of magma-carbonate interaction processes occurring at Merapi volcano

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Anisotropic elastic fields of twist boundaries

    Full text link
    Relations for linear anisotropic elastic fields of parallel arrays of dislocations are developed. These fields are used to compute the displacement fields of twist boundaries composed of a square grid of screw dislocations. For gold, the results are shown to agree to first order with fields deduced from X-ray diffraction studies and from atomistic simulations for twist boundaries in gold.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30031/1/0000399.pd

    Soil-landscape and climatic relationships in the middle Miocene of the Madrid Basin

    Get PDF
    The Miocene alluvial-lacustrine sequences of the Madrid Basin, Spain, formed in highly varied landscapes. The presence of various types of palaeosols allows assessment of the effects of local and external factors onsedimentation, pedogenesis and geomorphological development. In the northern, more arid, tectonicallyactive arca, soils were weakly developed in aggrading alluvial fans, dominated by mass flows. reflecting high sedimentation rates. In more distal parts of the fans and in playa lakes calcretes and dolocretes developed: the former were associated with Mg-poor fan sediments whitc: the latter formed on Mg-rich lake clays exposed during minar lake lowstands. The nonh-east part of the basin had a less arid climate. Alluvial fans in this area were dominated by stream Aood deposits, sourced by carbonate terrains. Floodplain and freshwater lakc deposits formed in distal areas. The high local supply of calcium carbonate may have contributed to the preferential developmenl on calcretes on the fans. Both the fan and floodplain palaeosols exhibit pedofacies relationships and more mature soils developed in settings more distant from the sediment sources. Palaeosols also developed on pond and lake margin carbonates, and led to the formation of palustrine limestones. The spatial distributions and stratigraphies of palaeosols in the Madrid Basin alluvial fans suggest that soil formation was controlled by local factors. These palaeosols differ from those seen in Quatemary fans. Which are characterized by climatically induced periods of stability and instability

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore