226 research outputs found

    Use of near-infrared systems for investigations of hemodynamics in human in vivo bone tissue: a systematic review

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.A range of technologies using near infrared (NIR) light have shown promise at providing real time measurements of hemodynamic markers in bone tissue in vivo, an exciting prospect given existing difficulties in measuring hemodynamics in bone tissue. This systematic review aimed to evaluate the evidence for this potential use of NIR systems, establishing their potential as a research tool in this field. Major electronic databases including MEDLINE and EMBASE were searched using pre‐planned search strategies with broad scope for any in vivo use of NIR technologies in human bone tissue. Following identification of studies by title and abstract screening, full text inclusion was determined by double blind assessment using predefined criteria. Full text studies for inclusion were data extracted using a predesigned proforma and quality assessed. Narrative synthesis was appropriate given the wide heterogeneity of included studies. Eighty‐eight full text studies fulfilled the inclusion criteria, 57 addressing laser Doppler flowmetry (56 intra‐operatively), 21 near infrared spectroscopy, and 10 photoplethysmography. The heterogeneity of the methodologies included differing hemodynamic markers, measurement protocols, anatomical locations, and research applications, making meaningful direct comparisons impossible. Further, studies were often limited by small sample sizes with potential selection biases, detection biases, and wide variability in results between participants. Despite promising potential in the use of NIR light to interrogate bone circulation, the application of NIR systems in bone requires rigorous assessment of the reproducibility of potential hemodynamic markers and further validation of these markers against alternative physiologically relevant reference standards.This systematic review was supported by the College of Radiographers Industry Partnership Scheme (CORIPS) Doctoral Fellowship Grant (Applicant 003). The CORIPS are providing financial support but have no input into the design, performance or analysis of this systematic review. WDS, FC and CT would like to acknowledge the NIHR Exeter Clinical Research Facility and the NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR Exeter Clinical Research Facility, the NHS, the NIHR or the Department of Health in England

    Embryonic and adult isoforms of XLAP2 form microdomains associated with chromatin and the nuclear envelope

    Get PDF
    Laminin-associated polypeptide 2 (LAP2) proteins are alternatively spliced products of a single gene; they belong to the LEM domain family and, in mammals, locate to the nuclear envelope (NE) and nuclear lamina. Isoforms lacking the transmembrane domain also locate to the nucleoplasm. We used new specific antibodies against the N-terminal domain of Xenopus LAP2 to perform immunoprecipitation, identification and localization studies during Xenopus development. By immunoprecipitation and mass spectrometry (LC/MS/MS), we identified the embryonic isoform XLAP2γ, which was downregulated during development similarly to XLAP2ω. Embryonic isoforms XLAP2ω and XLAP2γ were located in close association with chromatin up to the blastula stage. Later in development, both embryonic isoforms and the adult isoform XLAP2β were localized in a similar way at the NE. All isoforms colocalized with lamin B2/B3 during development, whereas XLAP2β was colocalized with lamin B2 and apparently with the F/G repeat nucleoporins throughout the cell cycle in adult tissues and culture cells. XLAP2β was localized in clusters on chromatin, both at the NE and inside the nucleus. Embryonic isoforms were also localized in clusters at the NE of oocytes. Our results suggest that XLAP2 isoforms participate in the maintenance and anchoring of chromatin domains to the NE and in the formation of lamin B microdomains

    Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host

    Get PDF
    BACKGROUND: Recently, a negative association between Toxoplasma-infection and novelty seeking was reported. The authors suggested that changes of personality trait were caused by manipulation activity of the parasite, aimed at increasing the probability of transmission of the parasite from an intermediate to a definitive host. They also suggested that low novelty seeking indicated an increased level of the neurotransmitter dopamine in the brain of infected subjects, a phenomenon already observed in experimentally infected rodents. However, the changes in personality can also be just a byproduct of any neurotropic infection. Moreover, the association between a personality trait and the toxoplasmosis can even be caused by an independent correlation of both the probability of Toxoplasma-infection and the personality trait with the third factor, namely with the size of living place of a subject. To test these two alternative hypotheses, we studied the influence of another neurotropic pathogen, the cytomegalovirus, on the personality of infected subjects, and reanalyzed the original data after the effect of the potential confounder, the size of living place, was controlled. METHODS: In the case-control study, 533 conscripts were tested for toxoplasmosis and presence of anti-cytomegalovirus antibodies and their novelty seeking was examined with Cloninger's TCI questionnaire. Possible association between the two infections and TCI dimensions was analyzed. RESULTS: The decrease of novelty seeking is associated also with cytomegalovirus infection. After the size of living place was controlled, the effect of toxoplasmosis on novelty seeking increased. Significant difference in novelty seeking was observed only in the largest city, Prague. CONCLUSION: Toxoplasma and cytomegalovirus probably induce a decrease of novelty seeking. As the cytomegalovirus spreads in population by direct contact (not by predation as with Toxoplasma), the observed changes are the byproduct of brain infections rather than the result of manipulation activity of a parasite. Four independent lines of indirect evidence, namely direct measurement of neurotransmitter concentration in mice, the nature of behavioral changes in rodents, the nature of personality changes in humans, and the observed association between schizophrenia and toxoplasmosis, suggest that the changes of dopamine concentration in brain could play a role in behavioral changes of infected hosts

    Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes

    Get PDF
    An assessment of several widely used exchange--correlation potentials in computing charge-transfer integrals is performed. In particular, we employ the recently proposed Coulomb-attenuated model which was proven by other authors to improve upon conventional functionals in the case of charge-transfer excitations. For further validation, two distinct approaches to compute the property in question are compared for a phthalocyanine dimer

    Role of A-type lamins in signaling, transcription, and chromatin organization

    Get PDF
    A-type lamins (lamins A and C), encoded by the LMNA gene, are major protein constituents of the mammalian nuclear lamina, a complex structure that acts as a scaffold for protein complexes that regulate nuclear structure and functions. Interest in these proteins has increased in recent years with the discovery that LMNA mutations cause a variety of human diseases termed laminopathies, including progeroid syndromes and disorders that primarily affect striated muscle, adipose, bone, and neuronal tissues. In this review, we discuss recent research supporting the concept that lamin A/C and associated nuclear envelope proteins regulate gene expression in health and disease through interplay with signal transduction pathways, transcription factors, and chromatin-associated proteins

    Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Get PDF
    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil

    Roadmap on biology in time varying environments

    Get PDF
    Biological organisms experience constantly changing environments, from sudden changes in physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological changes over evolutionary timescales. Living organisms have evolved to thrive in this changing world but the general principles by which organisms shape and are shaped by time varying environments remain elusive. Our understanding is particularly poor in the intermediate regime with no separation of timescales, where the environment changes on the same timescale as the physiological or evolutionary response. Experiments to systematically characterize the response to dynamic environments are challenging since such environments are inherently high dimensional. This roadmap deals with the unique role played by time varying environments in biological phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities and the challenges faced in this emerging area of research

    Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials

    Get PDF
    Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA (“biomaterial risk management”) an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 “benchmark” nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses
    corecore