439 research outputs found
Brownian Confidence Bands on Monte Carlo Output
International audienceWhen considering a Monte Carlo estimation procedure, the path produced by successive partial estimates is often used as a guide for informal convergence diagnostics. However the confidence region associated with that path cannot be derived simplistically from the confidence interval for the estimate itself. An asymptotically correct approach can be based on the Brownian motion approximation of the path, but no exact formula for the corresponding area-minimizing confidence region is yet known. We construct proxy regions based on local time arguments and consider numerical approximations. These are then available for a more incisive assessment of the Monte Carlo procedure and thence of the estimate itself
Minimum variance importance sampling via Population Monte Carlo
International audienceVariance reduction has always been a central issue in Monte Carlo experiments. Population Monte Carlo can be used to this effect, in that a mixture of importance functions, called a D-kernel, can be iteratively optimised to achieve the minimum asymptotic variance for a function of interest among all possible mixtures. The implementation of this iterative scheme is illustrated for the computation of the price of a European option in the Cox-Ingersoll-Ross model
Convergence of adaptive sampling schemes
International audienceIn the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performances of a given kernel can clarify how adequate it is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is quite complex and most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for a wide class of population Monte Carlo algorithms and show that Rao-Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions simply do not benefit from repeated updating
Somatotypes trajectories during adulthood and their association with COPD phenotypes
Rationale: Chronic obstructive pulmonary disease (COPD) comprises distinct phenotypes, all characterised by airflow limitation.
Objectives: We hypothesised that somatotype changes - as a surrogate of adiposity - from early adulthood follow different trajectories to reach distinct phenotypes.
Methods: Using the validated Stunkard''s Pictogram, 356 COPD patients chose the somatotype that best reflects their current body build and those at ages 18, 30, 40 and 50 years. An unbiased group-based trajectory modelling was used to determine somatotype trajectories. We then compared the current COPD-related clinical and phenotypic characteristics of subjects belonging to each trajectory.
Measurements and main results: At 18 years of age, 88% of the participants described having a lean or medium somatotype (estimated body mass index (BMI) between 19 and 23 kg.m(-2)) while the other 12% a heavier somatotype (estimated BMI between 25 and 27 kg.m(-2)). From age 18 onwards, five distinct trajectories were observed. Four of them demonstrating a continuous increase in adiposity throughout adulthood with the exception of one, where the initial increase was followed by loss of adiposity after age 40. Patients with this trajectory were primarily females with low BMI and D-LCO (diffusing capacity of the lung for carbon monoxide). A persistently lean trajectory was seen in 14% of the cohort. This group had significantly lower forced expiratory volume in 1 s (FEV1), D-LCO, more emphysema and a worse BODE (BMI, airflow obstruction, dyspnoea and exercise capacity) score thus resembling the multiple organ loss of tissue (MOLT) phenotype.
Conclusions: COPD patients have distinct somatotype trajectories throughout adulthood. Those with the MOLT phenotype maintain a lean trajectory throughout life. Smoking subjects with this lean phenotype in early adulthood deserve particular attention as they seem to develop more severe COPD
MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications
Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications.
However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity
Somatotypes trajectories during adulthood and their association with COPD phenotypes
Rationale: Chronic obstructive pulmonary disease (COPD) comprises distinct phenotypes, all
characterised by airflow limitation.
Objectives: We hypothesised that somatotype changes – as a surrogate of adiposity – from early adulthood
follow different trajectories to reach distinct phenotypes.
Methods: Using the validated Stunkard’s Pictogram, 356 COPD patients chose the somatotype that best
reflects their current body build and those at ages 18, 30, 40 and 50 years. An unbiased group-based
trajectory modelling was used to determine somatotype trajectories. We then compared the current
COPD-related clinical and phenotypic characteristics of subjects belonging to each trajectory.
Measurements and main results: At 18 years of age, 88% of the participants described having a lean or
medium somatotype (estimated body mass index (BMI) between 19 and 23 kg·m−2
) while the other 12% a
heavier somatotype (estimated BMI between 25 and 27 kg·m−2
). From age 18 onwards, five distinct
trajectories were observed. Four of them demonstrating a continuous increase in adiposity throughout
adulthood with the exception of one, where the initial increase was followed by loss of adiposity after age
40. Patients with this trajectory were primarily females with low BMI and DLCO (diffusing capacity of the
lung for carbon monoxide). A persistently lean trajectory was seen in 14% of the cohort. This group had
significantly lower forced expiratory volume in 1 s (FEV1), DLCO, more emphysema and a worse BODE
(BMI, airflow obstruction, dyspnoea and exercise capacity) score thus resembling the multiple organ loss
of tissue (MOLT) phenotype.
Conclusions: COPD patients have distinct somatotype trajectories throughout adulthood. Those with the
MOLT phenotype maintain a lean trajectory throughout life. Smoking subjects with this lean phenotype in
early adulthood deserve particular attention as they seem to develop more severe COPD
Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method
This paper discusses hadron energy reconstruction for the ATLAS barrel
prototype combined calorimeter (consisting of a lead-liquid argon
electromagnetic part and an iron-scintillator hadronic part) in the framework
of the non-parametrical method. The non-parametrical method utilizes only the
known ratios and the electron calibration constants and does not require
the determination of any parameters by a minimization technique. Thus, this
technique lends itself to an easy use in a first level trigger. The
reconstructed mean values of the hadron energies are within of the
true values and the fractional energy resolution is . The value of the ratio
obtained for the electromagnetic compartment of the combined calorimeter is
and agrees with the prediction that for this
electromagnetic calorimeter. Results of a study of the longitudinal hadronic
shower development are also presented. The data have been taken in the H8 beam
line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary
This paper constructs the reduction of heterotic -theory in eleven
dimensions to a supergravity model on a manifold with boundary in five
dimensions using a Calabi-Yau three-fold. New results are presented for the
boundary terms in the action and for the boundary conditions on the bulk
fields. Some general features of dualisation on a manifold with boundary are
used to explain the origin of some topological terms in the action. The effect
of gaugino condensation on the fermion boundary conditions leads to a `twist'
in the chirality of the gravitino which can provide an uplifting mechanism in
the vacuum energy to cancel the cosmological constant after moduli
stabilisation.Comment: 16 pages, RevTe
- …