699 research outputs found

    Estimation of unitary quantum operations

    Full text link
    The problem of optimally estimating an unknown unitary quantum operation with the aid of entanglement is addressed. The idea is to prepare an entangled pair, apply the unknown unitary to one of the two parts and then measure the joint output state. This measurement could be an entangled one or it could be separable (e.g., LOCC). A comparison is made between these possibilities and it is shown that by using non-separable measurements one can improve the accuracy of the estimation by a factor of 2(d+1)/d2(d+1)/d where dd is the dimension of the Hilbert space on which UU acts.Comment: 6 pages. Revised version. Typos corrected. Some discussion added. Reference fixe

    Collective versus local measurements on two parallel or antiparallel spins

    Get PDF
    We give a complete analysis of covariant measurements on two spins. We consider the cases of two parallel and two antiparallel spins, and we consider both collective measurements on the two spins, and measurements which require only Local Quantum Operations and Classical Communication (LOCC). In all cases we obtain the optimal measurements for arbitrary fidelities. In particular we show that if the aim is determine as well as possible the direction in which the spins are pointing, it is best to carry out measurements on antiparallel spins (as already shown by Gisin and Popescu), second best to carry out measurements on parallel spins and worst to be restricted to LOCC measurements. If the the aim is to determine as well as possible a direction orthogonal to that in which the spins are pointing, it is best to carry out measurements on parallel spins, whereas measurements on antiparallel spins and LOCC measurements are both less good but equivalent.Comment: 4 pages; minor revision

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Mini-Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a secondary care setting

    Get PDF
    Background: The diagnosis of Alzheimer's disease dementia and other dementias relies on clinical assessment. There is a high prevalence of cognitive disorders, including undiagnosed dementia in secondary care settings. Short cognitive tests can be helpful in identifying those who require further specialist diagnostic assessment; however, there is a lack of consensus around the optimal tools to use in clinical practice. The Mini‐Cog is a short cognitive test comprising three‐item recall and a clock‐drawing test that is used in secondary care settings. Objectives: The primary objective was to determine the diagnostic accuracy of the Mini‐Cog for detecting Alzheimer's disease dementia and other dementias in a secondary care setting. The secondary objectives were to investigate the heterogeneity of test accuracy in the included studies and potential sources of heterogeneity. These potential sources of heterogeneity will include the baseline prevalence of dementia in study samples, thresholds used to determine positive test results, the type of dementia (Alzheimer's disease dementia or all causes of dementia), and aspects of study design related to study quality. Search methods: We searched the following sources in September 2012, with an update to 12 March 2019: Cochrane Dementia Group Register of Diagnostic Test Accuracy Studies, MEDLINE (OvidSP), Embase (OvidSP), BIOSIS Previews (Web of Knowledge), Science Citation Index (ISI Web of Knowledge), PsycINFO (OvidSP), and LILACS (BIREME). We made no exclusions with regard to language of Mini‐Cog administration or language of publication, using translation services where necessary. Selection criteria: We included cross‐sectional studies and excluded case‐control designs, due to the risk of bias. We selected those studies that included the Mini‐Cog as an index test to diagnose dementia where dementia diagnosis was confirmed with reference standard clinical assessment using standardised dementia diagnostic criteria. We only included studies in secondary care settings (including inpatient and outpatient hospital participants). Data collection and analysis: We screened all titles and abstracts generated by the electronic database searches. Two review authors independently checked full papers for eligibility and extracted data. We determined quality assessment (risk of bias and applicability) using the QUADAS‐2 tool. We extracted data into two‐by‐two tables to allow calculation of accuracy metrics for individual studies, reporting the sensitivity, specificity, and 95% confidence intervals of these measures, summarising them graphically using forest plots. Main results: Three studies with a total of 2560 participants fulfilled the inclusion criteria, set in neuropsychology outpatient referrals, outpatients attending a general medicine clinic, and referrals to a memory clinic. Only n = 1415 (55.3%) of participants were included in the analysis to inform evaluation of Mini‐Cog test accuracy, due to the selective use of available data by study authors. There were concerns related to high risk of bias with respect to patient selection, and unclear risk of bias and high concerns related to index test conduct and applicability. In all studies, the Mini‐Cog was retrospectively derived from historic data sets. No studies included acute general hospital inpatients. The prevalence of dementia ranged from 32.2% to 87.3%. The sensitivities of the Mini‐Cog in the individual studies were reported as 0.67 (95% confidence interval (CI) 0.63 to 0.71), 0.60 (95% CI 0.48 to 0.72), and 0.87 (95% CI 0.83 to 0.90). The specificity of the Mini‐Cog for each individual study was 0.87 (95% CI 0.81 to 0.92), 0.65 (95% CI 0.57 to 0.73), and 1.00 (95% CI 0.94 to 1.00). We did not perform meta‐analysis due to concerns related to risk of bias and heterogeneity. Authors' conclusions: This review identified only a limited number of diagnostic test accuracy studies using Mini‐Cog in secondary care settings. Those identified were at high risk of bias related to patient selection and high concerns related to index test conduct and applicability. The evidence was indirect, as all studies evaluated Mini‐Cog differently from the review question, where it was anticipated that studies would conduct Mini‐Cog and independently but contemporaneously perform a reference standard assessment to diagnose dementia. The pattern of test accuracy varied across the three studies. Future research should evaluate Mini‐Cog as a test in itself, rather than derived from other neuropsychological assessments. There is also a need for evaluation of the feasibility of the Mini‐Cog for the diagnosis of dementia to help adequately determine its role in the clinical pathway

    Time-averaged wavefront analysis demonstrates preferential pathways of atrial fibrillation, predicting pulmonary vein isolation acute response

    Get PDF
    Electrical activation during atrial fibrillation (AF) appears chaotic and disorganised, which impedes characterisation of the underlying substrate and treatment planning. While globally chaotic, there may be local preferential activation pathways that represent potential ablation targets. This study aimed to identify preferential activation pathways during AF and predict the acute ablation response when these are targeted by pulmonary vein isolation (PVI). In patients with persistent AF (n = 14), simultaneous biatrial contact mapping with basket catheters was performed pre-ablation and following each ablation strategy (PVI, roof, and mitral lines). Unipolar wavefront activation directions were averaged over 10 s to identify preferential activation pathways. Clinical cases were classified as responders or non-responders to PVI during the procedure. Clinical data were augmented with a virtual cohort of 100 models. In AF pre-ablation, pathways originated from the pulmonary vein (PV) antra in PVI responders (7/7) but not in PVI non-responders (6/6). We proposed a novel index that measured activation waves from the PV antra into the atrial body. This index was significantly higher in PVI responders than non-responders (clinical: 16.3 vs. 3.7%, p = 0.04; simulated: 21.1 vs. 14.1%, p = 0.02). Overall, this novel technique and proof of concept study demonstrated that preferential activation pathways exist during AF. Targeting patient-specific activation pathways that flowed from the PV antra to the left atrial body using PVI resulted in AF termination during the procedure. These PV activation flow pathways may correspond to the presence of drivers in the PV regions

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore