413 research outputs found
Duality properties of indicatrices of knots
The bridge index and superbridge index of a knot are important invariants in
knot theory. We define the bridge map of a knot conformation, which is closely
related to these two invariants, and interpret it in terms of the tangent
indicatrix of the knot conformation. Using the concepts of dual and derivative
curves of spherical curves as introduced by Arnold, we show that the graph of
the bridge map is the union of the binormal indicatrix, its antipodal curve,
and some number of great circles. Similarly, we define the inflection map of a
knot conformation, interpret it in terms of the binormal indicatrix, and
express its graph in terms of the tangent indicatrix. This duality relationship
is also studied for another dual pair of curves, the normal and Darboux
indicatrices of a knot conformation. The analogous concepts are defined and
results are derived for stick knots.Comment: 22 pages, 9 figure
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
Small, Dense Quark Stars from Perturbative QCD
As a model for nonideal behavior in the equation of state of QCD at high
density, we consider cold quark matter in perturbation theory. To second order
in the strong coupling constant, , the results depend sensitively on
the choice of the renormalization mass scale. Certain choices of this scale
correspond to a strongly first order chiral transition, and generate quark
stars with maximum masses and radii approximately half that of ordinary neutron
stars. At the center of these stars, quarks are essentially massless.Comment: ReVTeX, 5 pages, 3 figure
Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei
Analytical expressions of the one- and two-body terms in the cluster
expansion of the charge form factors and densities of the s-p and s-d shell
nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b
and the parameter which originates from the Jastrow correlation
function. These expressions are used for the systematic study of the effect of
short range correlations on the form factors and densities and of the mass
dependence of the parameters b and . These parameters have been
determined by fit to the experimental charge form factors. The inclusion of the
correlations reproduces the experimental charge form factors at the high
momentum transfers (). It is found that while the parameter
is almost constant for the closed shell nuclei, He, O and
Ca, its values are larger (less correlated systems) for the open shell
nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have
a long history together in the standard cosmology. The general concordance
between the predicted and observed light element abundances provides a direct
probe of the universal baryon density. Recent CMB anisotropy measurements,
particularly the observations performed by the WMAP satellite, examine this
concordance by independently measuring the cosmic baryon density. Key to this
test of concordance is a quantitative understanding of the uncertainties in the
BBN light element abundance predictions. These uncertainties are dominated by
systematic errors in nuclear cross sections. We critically analyze the cross
section data, producing representations that describe this data and its
uncertainties, taking into account the correlations among data, and explicitly
treating the systematic errors between data sets. Using these updated nuclear
inputs, we compute the new BBN abundance predictions, and quantitatively
examine their concordance with observations. Depending on what deuterium
observations are adopted, one gets the following constraints on the baryon
density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at
68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and
lithium observations limit the confidence constraints based on this data
provide. With new nuclear cross section data, light element abundance
observations and the ever increasing resolution of the CMB anisotropy, tighter
constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes
to text and reference
Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector
A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model
- …