293 research outputs found
Development of a Short and ICD-11 Compatible Measure for DSM-5 Maladaptive Personality Traits Using Ant Colony Optimization Algorithms
While Diagnostic and Statistical Manual of Mental Disorders–Fifth edition (DSM-5) Section III and ICD-11 (International Classification of Diseases 11th–Revision) both allow for dimensional assessment of personality pathology, the models differ in the definition of maladaptive traits. In this study, we pursued the goal of developing a short and reliable assessment for maladaptive traits, which is compatible with both models, using the item pool of the Personality Inventory for DSM-5 (PID-5). To this aim, we applied ant colony optimization algorithms in English- and German-speaking samples comprising a total N of 2,927. This procedure yielded a 34-item measure with a hierarchical latent structure including six maladaptive trait domains and 17 trait facets, the “Personality Inventory for DSM-5, Brief Form Plus” (PID5BF+). While latent structure, reliability, and criterion validity were ascertained in the original and in two separate validation samples (n = 849, n = 493) and the measure was able to discriminate personality disorders from other diagnoses in a clinical subsample, results suggest further modifications for capturing ICD-11 Anankastia
Rationale, design and conduct of a randomised controlled trial evaluating a primary care-based complex intervention to improve the quality of life of heart failure patients: HICMan (Heidelberg Integrated Case Management) : study protocol
Background: Chronic congestive heart failure (CHF) is a complex disease with rising prevalence, compromised quality of life (QoL), unplanned hospital admissions, high mortality and therefore high burden of illness. The delivery of care for these patients has been criticized and new strategies addressing crucial domains of care have been shown to be effective on patients' health outcomes, although these trials were conducted in secondary care or in highly organised Health Maintenance Organisations. It remains unclear whether a comprehensive primary care-based case management for the treating general practitioner (GP) can improve patients' QoL. Methods/Design: HICMan is a randomised controlled trial with patients as the unit of randomisation. Aim is to evaluate a structured, standardized and comprehensive complex intervention for patients with CHF in a 12-months follow-up trial. Patients from intervention group receive specific patient leaflets and documentation booklets as well as regular monitoring and screening by a prior trained practice nurse, who gives feedback to the GP upon urgency. Monitoring and screening address aspects of disease-specific selfmanagement, (non)pharmacological adherence and psychosomatic and geriatric comorbidity. GPs are invited to provide a tailored structured counselling 4 times during the trial and receive an additional feedback on pharmacotherapy relevant to prognosis (data of baseline documentation). Patients from control group receive usual care by their GPs, who were introduced to guidelineoriented management and a tailored health counselling concept. Main outcome measurement for patients' QoL is the scale physical functioning of the SF-36 health questionnaire in a 12-month follow-up. Secondary outcomes are the disease specific QoL measured by the Kansas City Cardiomyopathy questionnaire (KCCQ), depression and anxiety disorders (PHQ-9, GAD-7), adherence (EHFScBS and SANA), quality of care measured by an adapted version of the Patient Chronic Illness Assessment of Care questionnaire (PACIC) and NTproBNP. In addition, comprehensive clinical data are collected about health status, comorbidity, medication and health care utilisation. Discussion: As the targeted patient group is mostly cared for and treated by GPs, a comprehensive primary care-based guideline implementation including somatic, psychosomatic and organisational aspects of the delivery of care (HICMAn) is a promising intervention applying proven strategies for optimal care. Trial registration: Current Controlled Trials ISRCTN30822978
An algebraic scheme associated with the noncommutative KP hierarchy and some of its extensions
A well-known ansatz (`trace method') for soliton solutions turns the
equations of the (noncommutative) KP hierarchy, and those of certain
extensions, into families of algebraic sum identities. We develop an algebraic
formalism, in particular involving a (mixable) shuffle product, to explore
their structure. More precisely, we show that the equations of the
noncommutative KP hierarchy and its extension (xncKP) in the case of a
Moyal-deformed product, as derived in previous work, correspond to identities
in this algebra. Furthermore, the Moyal product is replaced by a more general
associative product. This leads to a new even more general extension of the
noncommutative KP hierarchy. Relations with Rota-Baxter algebras are
established.Comment: 59 pages, relative to the second version a few minor corrections, but
quite a lot of amendments, to appear in J. Phys.
Wafer-Scale Epitaxial Modulation of Quantum Dot Density
Precise control of the properties of semiconductor quantum dots (QDs) is
vital for creating novel devices for quantum photonics and advanced
opto-electronics. Suitable low QD-density for single QD devices and experiments
are challenging to control during epitaxy and are typically found only in
limited regions of the wafer. Here, we demonstrate how conventional molecular
beam epitaxy (MBE) can be used to modulate the density of optically active QDs
in one- and two- dimensional patterns, while still retaining excellent quality.
We find that material thickness gradients during layer-by-layer growth result
in surface roughness modulations across the whole wafer. Growth on such
templates strongly influences the QD nucleation probability. We obtain density
modulations between 1 and 10 QDs/ and periods ranging from several
millimeters down to at least a few hundred microns. This novel method is
universal and expected to be applicable to a wide variety of different
semiconductor material systems. We apply the method to enable growth of
ultra-low noise QDs across an entire 3-inch semiconductor wafer
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage
- …