44 research outputs found

    Emergent constraints on projections of declining primary production in the tropical oceans

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordMarine primary production is a fundamental component of the Earth system, providing the main source of food and energy to the marine food web, and influencing the concentration of atmospheric CO 2 (refs,). Earth system model (ESM) projections of global marine primary production are highly uncer tain with models projecting both increases and declines of up to 20% by 2100. This uncertainty is predominantly driven by the sensitivity of tropical ocean primary production to climate change, with the latest ESMs suggesting twenty-first-century tropical declines of between 1 and 30% (refs,). Here we identify an emergent relationship between the long-term sensitivity of tropical ocean primary production to rising equatorial zone sea surface temperature (SST) and the interannual sensitivity of primary production to El Niño/Southern Oscillation (ENSO)-driven SST anomalies. Satellite-based observations of the ENSO sensitivity of tropical primary production are then used to constrain projections of the long-term climate impact on primary production. We estimate that tropical primary production will decline by 3 ± 1% per kelvin increase in equatorial zone SST. Under a business-as-usual emissions scenario this results in an 11 ± 6% decline in tropical marine primary production and a 6 ± 3% decline in global marine primary production by 2100.European Union Horizon 202

    Natural halogens buffer tropospheric ozone in a changing climate

    Get PDF
    Reactive atmospheric halogens destroy tropospheric ozone (O3), an air pollutant and greenhouse gas. The primary source of natural halogens is emissions from marine phytoplankton and algae, as well as abiotic sources from ocean and tropospheric chemistry, but how their fluxes will change under climate warming, and the resulting impacts on O3, are not well known. Here, we use an Earth system model to estimate that natural halogens deplete approximately 13% of tropospheric O3 in the present-day climate. Despite increased levels of natural halogens through the twenty-first century, this fraction remains stable due to compensation from hemispheric, regional and vertical heterogeneity in tropospheric O3 loss. Notably, this halogen-driven O3 buffering is projected to be greatest over polluted and populated regions, due mainly to iodine chemistry, with important implications for air quality

    Oceanic nitrogen cycling and N2 O flux perturbations in the Anthropocene

    Get PDF
    There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (∼+5 Tg N y−1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales

    Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models

    Get PDF
    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free vs. ice-influenced) and bottom depth (shelf vs. deep ocean). The models performed relatively well for the most recent decade and towards the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. . Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling

    Temperature and oxygen dependence of the remineralization of organic matter

    Get PDF
    Accurate representation of the remineralization of sinking organic matter is crucial for reliable projections of the marine carbon cycle. Both water temperature and oxygen concentration are thought to influence remineralization rates, but limited data constraints have caused disagreement concerning the degree of these influences. We analyze a compilation of particulate organic carbon (POC) flux measurements from 19 globally distributed sites. Our results indicate that the attenuation of the flux of particulate organic matter depends on temperature with a Q10 between 1.5 and 2.01, and on oxygen described by a half-saturation constant between 4 and 12 μmol/L. We assess the impact of the temperature and oxygen dependence in the biogeochemistry model Carbon, Ocean Biogeochemistry, and Lower Trophics, coupled to Geophysical Fluid Dynamics Laboratory’s Earth System Model ESM2M. The new remineralization parameterization results in shallower remineralization in the low latitudes but deeper remineralization in the high latitudes, redistributing POC flux toward the poles. It also decreases the volume of the oxygen minimum zones, partly addressing a long-standing bias in global climate models. Extrapolating temperature-dependent remineralization rates to the surface (i.e., beyond the depth range of POC flux data) resulted in rapid recycling and excessive surface nutrients. Surface nutrients could be ameliorated by reducing near-surface rates in a manner consistent with bacterial colonization, suggesting the need for improved remineralization constraints within the euphotic zone. The temperature and oxygen dependence cause an additional 10% decrease in global POC flux at 500 m depth, but no significant change in global POC flux at 2000 m under the RCP8.5 future projection

    Glacial Iron Sources Stimulate the Southern Ocean Carbon Cycle

    Get PDF
    Icebergs and glacial meltwater have been observed to significantly affect chlorophyll concentrations, primary production, and particle export locally, yet the quantitative influence of glacial iron on the carbon cycle of the Southern Ocean remains unknown. We analyze the impact of icebergs and glacial meltwater on the Southern Ocean carbon cycle in a global Earth System Model. We consider several simulations spanning low and high bounds of current estimates of glacial iron concentration. We find that a high glacial iron input produces the best agreement with observed iron and chlorophyll distributions. These high glacial iron input results indicate that about 30% of the Southern Ocean particle export production, that is, the flux of particulate organic matter through the 100 m depth level, is driven by glacial iron sources. This export production is associated with an uptake of 0.14 Pg carbon per year, which reduces carbon outgassing in the Southern Ocean by 30%

    The Plastic Pathfinder: A macroplastic transport and fate model for terrestrial environments

    Get PDF
    Land-based plastic waste is the major source for freshwater and marine plastic pollution. Yet, the transport pathways over land remain highly uncertain. Here, we introduce a new conceptual model to forecast plastic transport on land: the Plastic Pathfinder; a numerical model that simulates the spatiotemporal distribution of macroplastic (&gt;0.5 cm) at a river basin scale. The plastic transport driving forces are wind and surface runoff, while plastic transport is resisted by terrain surface friction. The terrain surface friction, a function of the slope and land use, is converted into thresholds that define the critical wind and surface runoff conditions required to mobilize and transport macroplastic waste. When the wind and/or surface runoff conditions exceed their respective thresholds, the model simulates the transport and (re)distribution of plastics, resulting in plastic accumulation hotspots maps and high probability transport route maps. The Plastic Pathfinder contributes to a better mechanistic understanding of plastic transport through terrestrial environments, and upon future calibration and validation, can serve as a practical tool to optimize plastic waste prevention, mitigation, and reduction strategies.</p

    Projected 21st-century changes in marine heterotrophic bacteria under climate change.

    Get PDF
    Marine heterotrophic Bacteria (or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015-2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988-2011). Second, we demonstrate that across different climate scenarios, the simulated bacterial biomass trends (2076-2099) are sensitive to the regional trends in temperature and organic carbon stocks. Bacterial carbon biomass declines by 5-10% globally, while it increases by 3-5% in the Southern Ocean where semi-labile dissolved organic carbon (DOC) stocks are relatively low and particle-attached bacteria dominate. While a full analysis of drivers underpinning the simulated changes in all bacterial stock and rates is not possible due to data constraints, we investigate the mechanisms of the changes in DOC uptake rates of free-living bacteria using the first-order Taylor decomposition. The results demonstrate that the increase in semi-labile DOC stocks drives the increase in DOC uptake rates in the Southern Ocean, while the increase in temperature drives the increase in DOC uptake rates in the northern high and low latitudes. Our study provides a systematic analysis of bacteria at global scale and a critical step toward a better understanding of how bacteria affect the functioning of the biological carbon pump and partitioning of organic carbon pools between surface and deep layers
    corecore