136 research outputs found

    Changes over time in characteristics, resource use and outcomes among ICU patients with COVID-19-A nationwide, observational study in Denmark

    Get PDF
    BACKGROUND: Characteristics and care of intensive care unit (ICU) patients with COVID‐19 may have changed during the pandemic, but longitudinal data assessing this are limited. We compared patients with COVID‐19 admitted to Danish ICUs in the first wave with those admitted later. METHODS: Among all Danish ICU patients with COVID‐19, we compared demographics, chronic comorbidities, use of organ support, length of stay and vital status of those admitted 10 March to 19 May 2020 (first wave) versus 20 May 2020 to 30 June 2021. We analysed risk factors for death by adjusted logistic regression analysis. RESULTS: Among all hospitalised patients with COVID‐19, a lower proportion was admitted to ICU after the first wave (13% vs. 8%). Among all 1374 ICU patients with COVID‐19, 326 were admitted during the first wave. There were no major differences in patient's characteristics or mortality between the two periods, but use of invasive mechanical ventilation (81% vs. 58% of patients), renal replacement therapy (26% vs. 13%) and ECMO (8% vs. 3%) and median length of stay in ICU (13 vs. 10 days) and in hospital (20 vs. 17 days) were all significantly lower after the first wave. Risk factors for death were higher age, larger burden of comorbidities (heart failure, pulmonary disease and kidney disease) and active cancer, but not admission during or after the first wave. CONCLUSIONS: After the first wave of COVID‐19 in Denmark, a lower proportion of hospitalised patients with COVID‐19 were admitted to ICU. Among ICU patients, use of organ support was lower and length of stay was reduced, but mortality rates remained at a relatively high level

    Electrical Pulse Stimulation of Cultured Human Skeletal Muscle Cells as an In Vitro Model of Exercise

    Get PDF
    Background and Aims Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes. Methods Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting. Results High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells. Conclusions Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.This work was funded by the University of Oslo, Oslo University College, the Norwegian Diabetes Foundation, the Freia Chocolade Fabriks Medical Foundation and the Anders Jahre’s Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    100 ancient genomes show repeated population turnovers in Neolithic Denmark.

    Get PDF
    Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales <sup>1-4</sup> . However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution <sup>5-7</sup> . Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet ( <sup>13</sup> C and <sup>15</sup> N content), mobility ( <sup>87</sup> Sr/ <sup>86</sup> Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use

    Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene &lt;sup&gt;1-5&lt;/sup&gt; . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations

    Publisher Correction: Population genomics of post-glacial western Eurasia.

    Get PDF

    Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation

    Get PDF
    Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
    corecore