38 research outputs found

    Ibuprofen is deleterious for the development of first trimester human fetal ovary ex vivo

    Get PDF
    International audienceSTUDY QUESTION Does ibuprofen use during the first trimester of pregnancy interfere with the development of the human fetal ovary? SUMMARY ANSWER In human fetuses, ibuprofen exposure is deleterious for ovarian germ cells. WHAT IS KNOWN ALREADY In utero stages of ovarian development define the future reproductive capacity of a woman. In rodents, analgesics can impair the development of the fetal ovary leading to early onset of fertility failure. Ibuprofen, which is available over-the-counter, has been reported as a frequently consumed medication during pregnancy, especially during the first trimester when the ovarian germ cells undergo crucial steps of proliferation and differentiation. STUDY DESIGN, SIZE, DURATION Organotypic cultures of human ovaries obtained from 7 to 12 developmental week (DW) fetuses were exposed to ibuprofen at 1-100 μM for 2, 4 or 7 days. For each individual, a control culture (vehicle) was included and compared to its treated counterpart. A total of 185 individual samples were included. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian explants were analyzed by flow cytometry, immunohistochemistry and quantitative PCR. Endpoints focused on ovarian cell number, cell death, proliferation and germ cell complement. To analyze the possible range of exposure, ibuprofen was measured in the umbilical cord blood from the women exposed or not to ibuprofen prior to termination of pregnancy. MAIN RESULTS AND THE ROLE OF CHANCE Human ovarian explants exposed to 10 and 100 μM ibuprofen showed reduced cell number, less proliferating cells, increased apoptosis and a dramatic loss of germ cell number, regardless of the gestational age of the fetus. Significant effects were observed after 7 days of exposure to 10 μM ibuprofen. At this concentration, apoptosis was observed as early as 2 days of treatment, along with a decrease in M2A-positive germ cell number. These deleterious effects of ibuprofen were not fully rescued after 5 days of drug withdrawal. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed in an experimental setting of human ovaries explants exposed to the drug in culture, which may not fully recapitulate the complexity of in vivo exposure and organ development. Inter-individual variability is also to be taken into account. WIDER IMPLICATIONS OF THE FINDINGS Whereas ibuprofen is currently only contra-indicated after 24 weeks of pregnancy, our results points to a deleterious effect of this drug on first trimester fetal ovaries ex vivo. These findings deserve to be considered in light of the present recommendations about ibuprofen consumption pregnancy, and reveal the urgent need for further investigations on the cellular and molecular mechanisms that underlie the effect of ibuprofen on fetal ovary development. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology

    Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    Get PDF
    <div><p>Background</p><p>Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models.</p><p>Methods</p><p>Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks.</p><p>Results</p><p>With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice.</p><p>Conclusions</p><p>Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.</p></div

    Epigenetic transgenerational inheritance

    No full text
    Endocrine disruptors are critical environmental exposures that influence health and can promote epigenetic transgenerational inheritance of disease and abnormal physiology. Advances in 2015 included analyses of the effects of endocrine disruptors on human disease, further examples of endocrine disruptors promoting transgenerational behavioural effects, insights into effects of endocrine disruptors on epigenetic programming of primordial germ cells and the finding that endocrine disruptors can transgenerationally promote genetic mutations

    Radiobiology and Reproduction—What Can We Learn from Mammalian Females?

    Get PDF
    Ionizing radiation damages DNA and induces mutations as well as chromosomal reorganizations. Although radiotherapy increases survival among cancer patients, this treatment does not come without secondary effects, among which the most problematic is gonadal dysfunction, especially in women. Even more, if radio-induced DNA damage occurs in germ cells during spermatogenesis and/or oogenesis, they can produce chromosomal reorganizations associated with meiosis malfunction, abortions, as well as hereditary effects. However, most of our current knowledge of ionizing radiation genotoxic effects is derived from &lt;em&gt;in vitro&lt;/em&gt; studies performed in somatic cells and there are only some experimental data that shed light on how germ cells work when affected by DNA alterations produced by ionizing radiation. In addition, these few data are often related to mammalian males, making it difficult to extrapolate the results to females. Here, we review the current knowledge of radiobiology and reproduction, paying attention to mammalian females. In order to do that, we will navigate across the female meiotic/reproductive cycle/life taking into account the radiation-induced genotoxic effects analysis and animal models used, published in recent decades

    Effects of exposure to environmental chemicals during pregnancy on the development of the male and female reproductive axes

    No full text
    There is a large body of literature describing effects of environmental chemicals (ECs), many of them anthropogenic with endocrine-disrupting properties, on development in rodent laboratory species, some of which lead to impaired reproduction and adverse health. This literature joins extensive human epidemiological data and opportunistic wildlife findings on health effects of ECs. In contrast, the effect of endocrine disruption on foetal development and reproductive performance in domestic species is less extensively documented. This applies both to domestic farm and to companion species even though the former is critical to food production and the latter share our homes and many aspects of the modern developed human lifestyle. In domestic species, the nature of chemicals exposure in utero and their consequences for animal health and production are poorly understood. A complication in our understanding is that the pace of development, ontogeny and efficiency of foetal and maternal hepatic and placental activity differs between domestic species. In many ways, this reflects the difficulties in understanding human exposure and consequences of that exposure for the foetus and subsequent adult from epidemiological and largely rodent-based data. It is important that domestic species are included in research into endocrine disruption because of their (i) wide variety of exposure to such chemicals, (ii) greater similarity of many developmental processes to the human, (iii) economic importance and (iv) close similarities to developed world human lifestyle in companion species
    corecore