797 research outputs found

    A wide-field spectroscopic survey of the cluster of galaxies Cl0024+1654: I. The catalogue

    Get PDF
    We present the catalogue of a wide-field CFHT/WHT spectroscopic survey of the lensing cluster Cl0024+1654 at z=0.395. This catalogue contains 618 new spectra, of which 581 have identified redshifts. Adding redshifts available from the literature, the final catalogue contains data for 687 objects with redshifts identified for 650 of them. 295 galaxies have redshifts in the range 0.37<z<0.41, i. e. are cluster members or lie in the immediate neighbourhood of the cluster. The area covered by the survey is 21x25 arcmin2 in size, corresponding to 4x4.8 h^-2 Mpc2 at the cluster redshift. The survey is 45% complete down to V=22 over the whole field covered; within 3 arcmin of the cluster centre the completeness exceeds 80% at the same magnitude. A detailed completeness analysis is presented. The catalogue gives astrometric position, redshift, V magnitude and V-I colour, as well as the equivalent widths for a number of lines. Apart from the cluster Cl0024+1654 itself, three other structures are identified in redshift space: a group of galaxies at z=0.38, just in front of Cl0024+1654 and probably interacting with it, a close pair of groups of galaxies at z~0.495 and an overdensity of galaxies at z~0.18 with no obvious centre. The spectroscopic catalogue will be used to trace the three-dimensional structure of the cluster Cl0024+1654 as well as study the physical properties of the galaxies in the cluster and in its environment.Comment: 14 pages - figures included - A&A (re)submitted versio

    The Bolzano-Weierstrass Theorem is the Jump of Weak K\"onig's Lemma

    Full text link
    We classify the computational content of the Bolzano-Weierstrass Theorem and variants thereof in the Weihrauch lattice. For this purpose we first introduce the concept of a derivative or jump in this lattice and we show that it has some properties similar to the Turing jump. Using this concept we prove that the derivative of closed choice of a computable metric space is the cluster point problem of that space. By specialization to sequences with a relatively compact range we obtain a characterization of the Bolzano-Weierstrass Theorem as the derivative of compact choice. In particular, this shows that the Bolzano-Weierstrass Theorem on real numbers is the jump of Weak K\"onig's Lemma. Likewise, the Bolzano-Weierstrass Theorem on the binary space is the jump of the lesser limited principle of omniscience LLPO and the Bolzano-Weierstrass Theorem on natural numbers can be characterized as the jump of the idempotent closure of LLPO. We also introduce the compositional product of two Weihrauch degrees f and g as the supremum of the composition of any two functions below f and g, respectively. We can express the main result such that the Bolzano-Weierstrass Theorem is the compositional product of Weak K\"onig's Lemma and the Monotone Convergence Theorem. We also study the class of weakly limit computable functions, which are functions that can be obtained by composition of weakly computable functions with limit computable functions. We prove that the Bolzano-Weierstrass Theorem on real numbers is complete for this class. Likewise, the unique cluster point problem on real numbers is complete for the class of functions that are limit computable with finitely many mind changes. We also prove that the Bolzano-Weierstrass Theorem on real numbers and, more generally, the unbounded cluster point problem on real numbers is uniformly low limit computable. Finally, we also discuss separation techniques.Comment: This version includes an addendum by Andrea Cettolo, Matthias Schr\"oder, and the authors of the original paper. The addendum closes a gap in the proof of Theorem 11.2, which characterizes the computational content of the Bolzano-Weierstra\ss{} Theorem for arbitrary computable metric space

    A-stable Runge-Kutta methods for semilinear evolution equations

    Get PDF
    We consider semilinear evolution equations for which the linear part generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. In this setting, we prove the existence of solutions which are temporally smooth in the norm of the lowest rung of the scale for an open set of initial data on the highest rung of the scale. Under the same assumptions, we prove that a class of implicit, AA-stable Runge--Kutta semidiscretizations in time of such equations are smooth as maps from open subsets of the highest rung into the lowest rung of the scale. Under the additional assumption that the linear part of the evolution equation is normal or sectorial, we prove full order convergence of the semidiscretization in time for initial data on open sets. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schr\"odinger equation

    In situ detection of boron by ChemCam on Mars

    Get PDF
    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater

    Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    Get PDF
    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A(1H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes

    Basalt-trachybasalt samples in Gale Crater, Mars

    Get PDF
    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg#=27 but with a secondary concentration of basaltic material,with a focus of compositions around Mg#=54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. The Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces

    The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit

    Full text link
    Recent ATLAS data significantly extend the exclusion limits for supersymmetric particles. We examine the impact of such data on global fits of the constrained minimal supersymmetric standard model (CMSSM) to indirect and cosmological data. We calculate the likelihood map of the ATLAS search, taking into account systematic errors on the signal and on the background. We validate our calculation against the ATLAS determinaton of 95% confidence level exclusion contours. A previous CMSSM global fit is then re-weighted by the likelihood map, which takes a bite at the high probability density region of the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has clarified explanation of our handling of signal systematic

    Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans

    Get PDF
    Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report. Matches version accepted by JHE
    corecore