13 research outputs found

    The Bolzano-Weierstrass Theorem is the Jump of Weak K\"onig's Lemma

    Full text link
    We classify the computational content of the Bolzano-Weierstrass Theorem and variants thereof in the Weihrauch lattice. For this purpose we first introduce the concept of a derivative or jump in this lattice and we show that it has some properties similar to the Turing jump. Using this concept we prove that the derivative of closed choice of a computable metric space is the cluster point problem of that space. By specialization to sequences with a relatively compact range we obtain a characterization of the Bolzano-Weierstrass Theorem as the derivative of compact choice. In particular, this shows that the Bolzano-Weierstrass Theorem on real numbers is the jump of Weak K\"onig's Lemma. Likewise, the Bolzano-Weierstrass Theorem on the binary space is the jump of the lesser limited principle of omniscience LLPO and the Bolzano-Weierstrass Theorem on natural numbers can be characterized as the jump of the idempotent closure of LLPO. We also introduce the compositional product of two Weihrauch degrees f and g as the supremum of the composition of any two functions below f and g, respectively. We can express the main result such that the Bolzano-Weierstrass Theorem is the compositional product of Weak K\"onig's Lemma and the Monotone Convergence Theorem. We also study the class of weakly limit computable functions, which are functions that can be obtained by composition of weakly computable functions with limit computable functions. We prove that the Bolzano-Weierstrass Theorem on real numbers is complete for this class. Likewise, the unique cluster point problem on real numbers is complete for the class of functions that are limit computable with finitely many mind changes. We also prove that the Bolzano-Weierstrass Theorem on real numbers and, more generally, the unbounded cluster point problem on real numbers is uniformly low limit computable. Finally, we also discuss separation techniques.Comment: This version includes an addendum by Andrea Cettolo, Matthias Schr\"oder, and the authors of the original paper. The addendum closes a gap in the proof of Theorem 11.2, which characterizes the computational content of the Bolzano-Weierstra\ss{} Theorem for arbitrary computable metric space

    A partial form of inherited human USP18 deficiency underlies infection and inflammation

    Get PDF
    International audienceHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease

    L'infection humaine par les virus foamy simiens zoonotiques : caractĂ©risation des Ă©pitopes reconnus par les anticorps neutralisants chez l’homme infectĂ©

    No full text
    Simian foamy viruses (SFVs) are ancient and wide-spread complex-type retroviruses that have co-evolved with their non-human primate (NHP) species for millions of years. These viruses can be transmitted to humans, primarily through bites, leading to the establishment of a life-long persistent infection. Despite frequent zoonotic transmission of SFVs from NHPs to humans in Central Africa and Asia, no overt pathology or human-to-human transmission of SFVs have been reported yet. My host laboratory hypothesized that the immune system efficiently controls viral replication in zoonotically infected humans. They demonstrated that neutralizing antibodies (nAbs) are present at high titers in Central African hunters infected with gorilla and chimpanzee SFV strains. My colleagues showed that two viral genotypes are circulating among SFV-infected NHPs and humans. A variant region within the surface domain (SU) of the viral envelope glycoprotein (Env), termed SUvar, forms basis of the two genotypes. The receptor binding domain (RBD) overlaps the SUvar region. The nAbs strictly target the SUvar region on the SFV Env.I aimed to characterize nAb epitopes located within the SUvar region of SFV Env. To map nAb epitopes within SUvar, I performed neutralization assays in presence of recombinant SU proteins that compete with Env at the surface of viral particles for nAb binding. I used plasma samples from Central African hunters infected with gorilla SFVs and foamy viral vectors expressing SFV Env from each of the two genotypes. I generated mutant SU proteins by systematically deleting glycosylation sites, inserting glycans to disrupt epitopes and by swapping residues between the two genotypes.I have described that nAb epitopes have a genotype-specific location. Through collaborative work with the laboratory of Prof. FĂ©lix Rey who solved the crystal structure of a gorilla SFV RBD, I have discovered that most SFV-specific nAbs target epitopes located at the apex of Env, in particular three mobile loops located at the interface between protomers. Vectors with deleted loops were produced and bound to cells but were non-infectious, suggesting that nAbs target epitopes with functional importance. In addition, we found a second major epitope in the bottom part of the RBD targeted by nAbs from individuals infected by one of the two genotypes. This region is involved in binding to cells. My results suggest that SFV-specific nAbs could block viral entry either by preventing Env binding to the cell surface or by preventing conformational changes of the Env trimer and fusion of viral and cellular membranes. Collectively, my data support the role of nAbs in the control of viral replication and human-to-human transmission.Les virus foamy simiens (VFS) sont des rĂ©trovirus de type complexe anciens et trĂšs rĂ©pandus. Ils ont Ă©voluĂ© conjointement avec leur espĂšce hĂŽte pendant des millions d'annĂ©es. Ces virus peuvent ĂȘtre transmis Ă  l'homme, principalement par des morsures, entraĂźnant l'Ă©tablissement d'une infection persistante. MalgrĂ© la transmission zoonotique frĂ©quente des VFS des PNH aux humains en Afrique centrale et en Asie, aucune pathologie sĂ©vĂšre ou transmission interhumaine des VFS n'a encore Ă©tĂ© dĂ©crite. Mon laboratoire a Ă©mis l'hypothĂšse que le systĂšme immunitaire contrĂŽle efficacement la rĂ©plication virale chez les humains infectĂ©s par des zoonoses. Mes collĂšgues ont dĂ©montrĂ© que des anticorps neutralisants (AcNs) sont prĂ©sents Ă  des titres Ă©levĂ©s chez les chasseurs d'Afrique centrale infectĂ©s par des souches de VFS de gorille et de chimpanzĂ©. Deux gĂ©notypes viraux circulent parmi les primates non humains (PNHs) et les hommes infectĂ©s par le VFS. Une rĂ©gion variante au sein du domaine de surface (SU) de la glycoprotĂ©ine d'enveloppe virale (Env), appelĂ©e SUvar, constitue la base des deux gĂ©notypes. Le domaine de liaison au rĂ©cepteur (RBD, pour receptor binding domain) chevauche la rĂ©gion SUvar. Ces anticorps neutralisants ciblent strictement la rĂ©gion SUvar de l'Env du VFS.Mon objectif Ă©tait de caractĂ©riser les Ă©pitopes reconnus par les AcN situĂ©s dans la rĂ©gion SUvar de l'Env du VFS. Pour cartographier les Ă©pitopes AcN au sein de la SUvar, j'ai rĂ©alisĂ© des tests de neutralisation en prĂ©sence de protĂ©ines SU recombinantes agissant comme compĂ©titeurs de l’enveloppe des particules virales pour la liaison aux AcN. J'ai utilisĂ© des Ă©chantillons de plasma provenant de chasseurs d'Afrique centrale infectĂ©s par le VFS du gorille et des vecteurs viraux foamy exprimant l'Env du VFS de l'un ou l'autre des deux gĂ©notypes. J'ai gĂ©nĂ©rĂ© des protĂ©ines SU mutantes en supprimant systĂ©matiquement des sites de glycosylation, en insĂ©rant des sites de glycosylation pour modifier des Ă©pitopes et en Ă©changeant des domaines entre les deux gĂ©notypes.J'ai montrĂ© que les Ă©pitopes neutralisants ont une localisation spĂ©cifique au gĂ©notype. GrĂące Ă  une collaboration avec le laboratoire du professeur FĂ©lix Rey qui a rĂ©solu une structure d'un RBD du VFS du gorille, j’ai pu montrĂ© que la plupart des AcNs spĂ©cifiques du VFS ciblent des Ă©pitopes situĂ©s Ă  l'apex de Env, en particulier trois boucles mobiles situĂ©es Ă  l'interface entre les protomĂšres. Des vecteurs dont l’enveloppe est dĂ©lĂ©tĂ©e pour chacune de ces boucles se fixent aux cellules mais sont non infectieux, ce qui suggĂšre que les AcNs ciblent des Ă©pitopes ayant une importance fonctionnelle. De plus, nous avons trouvĂ© un deuxiĂšme Ă©pitope majeur dans la partie infĂ©rieure du RBD ciblĂ© par les AcNs provenant d'individus infectĂ©s par l'un des deux gĂ©notypes. Cette rĂ©gion est impliquĂ©e dans la fixation aux cellules. Mes rĂ©sultats suggĂšrent que les AcNs spĂ©cifiques du VFS pourraient bloquer l'entrĂ©e du virus, soit en inhibant l’interaction entre Env et la surface de la cellule soit en empĂȘchant le changement de conformation de Env permettant la fusion des membranes virale et cellulaire. Mes donnĂ©es confirment que les AcNs pourraient contribuer Ă  contrĂŽler la rĂ©plication virale et la transmission interhumaine des VFS

    L'infection humaine par les virus foamy simiens zoonotiques : caractĂ©risation des Ă©pitopes reconnus par les anticorps neutralisants chez l’homme infectĂ©

    No full text
    Simian foamy viruses (SFVs) are ancient and wide-spread complex-type retroviruses that have co-evolved with their non-human primate (NHP) species for millions of years. These viruses can be transmitted to humans, primarily through bites, leading to the establishment of a life-long persistent infection. Despite frequent zoonotic transmission of SFVs from NHPs to humans in Central Africa and Asia, no overt pathology or human-to-human transmission of SFVs have been reported yet. My host laboratory hypothesized that the immune system efficiently controls viral replication in zoonotically infected humans. They demonstrated that neutralizing antibodies (nAbs) are present at high titers in Central African hunters infected with gorilla and chimpanzee SFV strains. My colleagues showed that two viral genotypes are circulating among SFV-infected NHPs and humans. A variant region within the surface domain (SU) of the viral envelope glycoprotein (Env), termed SUvar, forms basis of the two genotypes. The receptor binding domain (RBD) overlaps the SUvar region. The nAbs strictly target the SUvar region on the SFV Env.I aimed to characterize nAb epitopes located within the SUvar region of SFV Env. To map nAb epitopes within SUvar, I performed neutralization assays in presence of recombinant SU proteins that compete with Env at the surface of viral particles for nAb binding. I used plasma samples from Central African hunters infected with gorilla SFVs and foamy viral vectors expressing SFV Env from each of the two genotypes. I generated mutant SU proteins by systematically deleting glycosylation sites, inserting glycans to disrupt epitopes and by swapping residues between the two genotypes.I have described that nAb epitopes have a genotype-specific location. Through collaborative work with the laboratory of Prof. FĂ©lix Rey who solved the crystal structure of a gorilla SFV RBD, I have discovered that most SFV-specific nAbs target epitopes located at the apex of Env, in particular three mobile loops located at the interface between protomers. Vectors with deleted loops were produced and bound to cells but were non-infectious, suggesting that nAbs target epitopes with functional importance. In addition, we found a second major epitope in the bottom part of the RBD targeted by nAbs from individuals infected by one of the two genotypes. This region is involved in binding to cells. My results suggest that SFV-specific nAbs could block viral entry either by preventing Env binding to the cell surface or by preventing conformational changes of the Env trimer and fusion of viral and cellular membranes. Collectively, my data support the role of nAbs in the control of viral replication and human-to-human transmission.Les virus foamy simiens (VFS) sont des rĂ©trovirus de type complexe anciens et trĂšs rĂ©pandus. Ils ont Ă©voluĂ© conjointement avec leur espĂšce hĂŽte pendant des millions d'annĂ©es. Ces virus peuvent ĂȘtre transmis Ă  l'homme, principalement par des morsures, entraĂźnant l'Ă©tablissement d'une infection persistante. MalgrĂ© la transmission zoonotique frĂ©quente des VFS des PNH aux humains en Afrique centrale et en Asie, aucune pathologie sĂ©vĂšre ou transmission interhumaine des VFS n'a encore Ă©tĂ© dĂ©crite. Mon laboratoire a Ă©mis l'hypothĂšse que le systĂšme immunitaire contrĂŽle efficacement la rĂ©plication virale chez les humains infectĂ©s par des zoonoses. Mes collĂšgues ont dĂ©montrĂ© que des anticorps neutralisants (AcNs) sont prĂ©sents Ă  des titres Ă©levĂ©s chez les chasseurs d'Afrique centrale infectĂ©s par des souches de VFS de gorille et de chimpanzĂ©. Deux gĂ©notypes viraux circulent parmi les primates non humains (PNHs) et les hommes infectĂ©s par le VFS. Une rĂ©gion variante au sein du domaine de surface (SU) de la glycoprotĂ©ine d'enveloppe virale (Env), appelĂ©e SUvar, constitue la base des deux gĂ©notypes. Le domaine de liaison au rĂ©cepteur (RBD, pour receptor binding domain) chevauche la rĂ©gion SUvar. Ces anticorps neutralisants ciblent strictement la rĂ©gion SUvar de l'Env du VFS.Mon objectif Ă©tait de caractĂ©riser les Ă©pitopes reconnus par les AcN situĂ©s dans la rĂ©gion SUvar de l'Env du VFS. Pour cartographier les Ă©pitopes AcN au sein de la SUvar, j'ai rĂ©alisĂ© des tests de neutralisation en prĂ©sence de protĂ©ines SU recombinantes agissant comme compĂ©titeurs de l’enveloppe des particules virales pour la liaison aux AcN. J'ai utilisĂ© des Ă©chantillons de plasma provenant de chasseurs d'Afrique centrale infectĂ©s par le VFS du gorille et des vecteurs viraux foamy exprimant l'Env du VFS de l'un ou l'autre des deux gĂ©notypes. J'ai gĂ©nĂ©rĂ© des protĂ©ines SU mutantes en supprimant systĂ©matiquement des sites de glycosylation, en insĂ©rant des sites de glycosylation pour modifier des Ă©pitopes et en Ă©changeant des domaines entre les deux gĂ©notypes.J'ai montrĂ© que les Ă©pitopes neutralisants ont une localisation spĂ©cifique au gĂ©notype. GrĂące Ă  une collaboration avec le laboratoire du professeur FĂ©lix Rey qui a rĂ©solu une structure d'un RBD du VFS du gorille, j’ai pu montrĂ© que la plupart des AcNs spĂ©cifiques du VFS ciblent des Ă©pitopes situĂ©s Ă  l'apex de Env, en particulier trois boucles mobiles situĂ©es Ă  l'interface entre les protomĂšres. Des vecteurs dont l’enveloppe est dĂ©lĂ©tĂ©e pour chacune de ces boucles se fixent aux cellules mais sont non infectieux, ce qui suggĂšre que les AcNs ciblent des Ă©pitopes ayant une importance fonctionnelle. De plus, nous avons trouvĂ© un deuxiĂšme Ă©pitope majeur dans la partie infĂ©rieure du RBD ciblĂ© par les AcNs provenant d'individus infectĂ©s par l'un des deux gĂ©notypes. Cette rĂ©gion est impliquĂ©e dans la fixation aux cellules. Mes rĂ©sultats suggĂšrent que les AcNs spĂ©cifiques du VFS pourraient bloquer l'entrĂ©e du virus, soit en inhibant l’interaction entre Env et la surface de la cellule soit en empĂȘchant le changement de conformation de Env permettant la fusion des membranes virale et cellulaire. Mes donnĂ©es confirment que les AcNs pourraient contribuer Ă  contrĂŽler la rĂ©plication virale et la transmission interhumaine des VFS

    USP18 and ISG15 coordinately impact on SKP2 and cell cycle progression

    No full text
    Abstract USP18 is an isopeptidase that cleaves the ubiquitin-like ISG15 from conjugates and is also an essential negative feedback regulator of type I interferon signaling. We and others reported that USP18 protein is stabilized by ISG15 and targeted for degradation by SKP2 (S-phase kinase associated protein 2), the substrate-recognition subunit of the SCFSKP2 ubiquitin E3 ligase complex, which operates in cell cycle progression. Here, we have analyzed how, under non stimulated conditions, USP18, ISG15 and SKP2 communicate with each other, by enforcing or silencing their expression. We found that USP18 and SKP2 interact and that free ISG15 abrogates the complex, liberating USP18 from degradation and concomitantly driving SKP2 to degradation and/or ISGylation. These data reveal a dynamic interplay where the substrate USP18 stabilizes SKP2, both exogenous and endogenous. Consistent with this we show that silencing of baseline USP18 slows down progression of HeLa S3 cells towards S phase. Our findings point to USP18 and ISG15 as unexpected new SKP2 regulators, which aid in cell cycle progression at homeostasis

    Are We Betting on the Wrong Horse? Insignificant Archaeological Leather Fragments Provide the First Evidence for the Exploitation of Horsehide in Renaissance Denmark

    No full text
    Large archaeological, organic materials can be difficult to preserve, conserve, and store in their entirety, which is why prioritisation is often necessary. Priority is generally given to recognisable objects rather than smaller fragments. Nevertheless, for archaeological leather, exactly such insignificant fragments can provide new information on the diversity of species exploited. In this pilot study, we use a Citizen Science approach for the first time to identify archaeological leather fragments using the protein-based method Zooarchaeology by Mass Spectrometry (ZooMS). By inviting the public to participate in archaeological research, the project’s first 52 samples, including both recognisable and unidentifiable objects, were analysed. We show that the participants not only generated good data, but also contributed to current knowledge by identifying two hitherto undescribed animal species for leather in medieval and Renaissance Copenhagen. The finding of deer suggests that Copenhagen citizens now and then had access to game through the nobility and the finding of horse suggests that the unclean status of horses was sometimes overlooked to exploit its hide. Our findings are promising for more identifications and the new knowledge the project will generate. The study calls into question how we prioritise and assign value to cultural heritage materials
    corecore