564 research outputs found
Innate Immune Cell Regulation of Metabolic Homeostasis
Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternatively-activated macrophage responses, and were recently identified in murine white adipose tissue (WAT) where they may act to limit the development of obesity. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here, we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)+ beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signaling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging
Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution
The standard approach to analyzing 16S tag sequence data, which relies on
clustering reads by sequence similarity into Operational Taxonomic Units
(OTUs), underexploits the accuracy of modern sequencing technology. We present
a clustering-free approach to multi-sample Illumina datasets that can identify
independent bacterial subpopulations regardless of the similarity of their 16S
tag sequences. Using published data from a longitudinal time-series study of
human tongue microbiota, we are able to resolve within standard 97% similarity
OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S
tags differing by as little as 1 nucleotide (99.2% similarity). A comparative
analysis of oral communities of two cohabiting individuals reveals that most
such subpopulations are shared between the two communities at 100% sequence
identity, and that dynamical similarity between subpopulations in one host is
strongly predictive of dynamical similarity between the same subpopulations in
the other host. Our method can also be applied to samples collected in
cross-sectional studies and can be used with the 454 sequencing platform. We
discuss how the sub-OTU resolution of our approach can provide new insight into
factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures +
supplement. Significantly revised for clarity, references added, results not
change
Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass post-larvae
The stable production of high quality fry in marine aquaculture is still hampered by unpredictable mortality caused by infectious diseases during larval rearing. Consequently, the development of new biocontrol agents is crucial for a viable aquaculture industry. The bacterial energy storage compound poly-β-hydroxybutyrate (PHB) has been shown to exhibit beneficial properties on aquatic organisms such as enhanced survival, growth, disease resistance and a controlling effect on the gastrointestinal microbiota. However, the effect of PHB on the developing immune system of fish larvae has so far not been investigated. In the present study, the effect of feeding PHB-enriched Artemia nauplii on survival, growth and immune response in European sea bass (Dicentrarchus labrax) post-larvae was examined. Amorphous PHB was administered to 28 days old sea bass larvae over a period of 10 days. The survival and growth performance were monitored and the expression of 29 genes involved in immunity, growth, metabolism and stress-response was measured. While the expression of the insulin-like growth factor 1 (igf1), an indicator of relative growth, was upregulated in response to feeding PHB, the larval survival and growth performance remained unaffected. After 10 days of PHB treatment, the expression of the antimicrobial peptides dicentracin (dic) and hepcidin (hep) as well as mhc class IIa and mhc class IIb was elevated in the PHB fed larvae. This indicates that PHB is capable of stimulating the immune system of fish early life stages, which may be the cause of the increased resistance to diseases and robustness observed in previous studies
Protective Microbiota: From Localized to Long-Reaching Co-Immunity
Resident microbiota do not just shape host immunity, they can also contribute to host protection against pathogens and infectious diseases. Previous reviews of the protective roles of the microbiota have focused exclusively on colonization resistance localized within a microenvironment. This review shows that the protection against pathogens also involves the mitigation of pathogenic impact without eliminating the pathogens (i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic spread. Protective microorganisms can have an impact beyond their niche, interfering with the entry, establishment, growth, and spread of pathogenic microorganisms. More fundamentally, we propose a series of conceptual clarifications in support of the idea of a “co-immunity,” where an organism is protected by both its own immune system and components of its microbiota
Eosinophils are key regulators of perivascular adipose tissue and vascular functionality
Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has
been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident
immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in
mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in
mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil
reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced
bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil
reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after
activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as
a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the
regulation of normal PVAT anti-contractile function
Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae
The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-β-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry
- …
