40 research outputs found

    Functional Immune Anatomy of the Liver - as an allograft

    Get PDF

    Validation of an equation for energy expenditure that does not require the respiratory quotient.

    No full text
    BACKGROUND:Energy expenditure (EE) calculated from respirometric indirect calorimetry is most accurate when based on oxygen consumption (VO2), carbon dioxide production (VCO2) and estimated protein metabolism (PM). EE has a substantial dependence of ~7% on the respiratory quotient (RQ, VCO2/VO2) and a lesser dependence on PM, yet many studies have instead estimated EE from VO2 only while PM has often been ignored, thus reducing accuracy. In 1949 Weir proposed a method to accurately calculate EE without using RQ, which also adjusts for estimated PM based on dietary composition. This RQ- method utilizes the calorimeter airflow rate (FR), the change in fractional O2 concentration (ΔFO2) and the dietary protein fraction. The RQ- method has not previously been empirically validated against the standard RQ+ method using both VO2 and RQ. Our aim was to do that. METHODS:VO2 and VCO2 were measured repeatedly in 8 mice fed a high protein diet (HPD) during exposure to different temperatures (n = 168 measurements of 24h gas exchange). The HPD-adjusted RQ+ equation was: EE [kcal/time] = VO2 [L/time]×(3.853+1.081RQ) while the corresponding RQ- equation was: EE = 4.934×FR×ΔFO2. Agreement was analyzed using the ratios of the RQ- to RQ+ methods along with regression and Bland-Altman agreement analyses. We also evaluated the standard equation using the dietary food quotient (FQ) of 0.91 as a proxy for RQ (FQ+ method). RESULTS:Ratio analysis revealed that the mean error of the RQ- method was only 0.11 ± 0.042% while the maximum error was only 0.21%. Error using the FQ+ method was 4 -and 10-fold greater, respectively. Bland-Altman analysis demonstrated that the RQ- method very slightly overestimates EE as RQ decreases. Theoretically, this error can be eliminated completely by imposing an incurrent fractional oxygen concentration at a value only slightly greater than the atmospheric level. CONCLUSIONS:The Weir 'RQ-free' method for calculating EE is a highly valid alternative to the 'gold standard' method that requires RQ. The RQ- approach permits reduced cost and complexity in studies focused on EE and provides a way to rescue EE measurement in studies compromised by faulty CO2 measurements. Practitioners of respirometry should consider adjusting EE calculations for estimated protein metabolism based on dietary composition

    Lipopolysaccharide-induced lung injury is independent of serum vitamin D concentration.

    Get PDF
    Vitamin D deficiency is increasing in incidence around the world. Vitamin D, a fat-soluble vitamin, has documented effects on the innate and adaptive immune system, including macrophage and T regulatory (Treg) cell function. Since Treg cells are important in acute lung injury resolution, we hypothesized that vitamin D deficiency increases the severity of injury and delays injury resolution in lipopolysaccharide (LPS) induced acute lung injury. Vitamin D deficient mice were generated, using C57BL/6 mice, through diet modification and limited exposure to ultraviolet light. At 8 weeks of age, vitamin D deficient and sufficient mice received 2.5 g/kg of LPS or saline intratracheal. At 1 day, 3 days and 10 days, mice were anesthetized and lung elastance measured. Mice were euthanized and bronchoalveolar lavage fluid, lungs and serum were collected. Ex vivo neutrophil chemotaxis was evaluated, using neutrophils from vitamin D sufficient and deficient mice exposed to the chemoattractants, KC/CXCL1 and C5a, and to bronchoalveolar lavage fluid from LPS-exposed mice. We found no difference in the degree of lung injury. Leukocytes were mildly decreased in the bronchoalveolar fluid of vitamin D deficient mice at 1 day. Ex-vivo, neutrophils from vitamin D deficient mice showed impaired chemotaxis to KC but not to C5a. Vitamin D deficiency modestly impairs neutrophil chemotaxis; however, it does not affect lung injury or its resolution in an LPS model of acute lung injury

    Acutely decreased thermoregulatory energy expenditure or decreased activity energy expenditure both acutely reduce food intake in mice.

    Get PDF
    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21 °C to 28 °C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40 ± 1%) and dark cycle energy expenditure (15 ± 3%) at normal ambient temperature (21 °C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65 ± 7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14 ± 2% at 21 °C; 21 ± 4% at 28 °C), while food intake was reduced during the dark cycle (0.9 ± 0.1 g) in mice housed at 28 °C, but during the light cycle (0.3 ± 0.1 g) in mice housed at 21 °C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R(2) = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure

    Physiological regulation of hypothalamic IL-1 gene expression by leptin and glucocorticoids: implications for energy homeostasis

    No full text
    Physiological regulation of hypothalamic IL-1 gene expression by leptin and glucocorticoids: implications for energy homeostasis. Am J Physiol Endocrinol Metab 287: E1107–E1113, 2004. First published August 10, 2004; doi:10.1152/ajpendo.00038. 2004.—Interleukin-1 (IL-1 ) is synthesized in a variety of tissues, including the hypothalamus, where it is implicated in the control of food intake. The current studies were undertaken to investigate whether hypothalamic IL-1 gene expression is subject to physiological regulation by leptin and glucocorticoids (GCs), key hormones involved in energy homeostasis. Adrenalectomy (ADX) increased hypothalamic IL-1 mRNA levels twofold, measured by real-time PCR (P 0.05 vs. sham-operated controls), and this effect was blocked by subcutaneous infusion of a physiological dose of corticosterone. Conversely, hypothalamic IL-1 mRNA levels were reduced by 30% in fa/fa (Zucker) rats, a model of genetic obesity caused by leptin receptor mutation (P 0.01 vs. lean littermates), and the effect of ADX to increase hypothalamic IL-1 mRNA levels in fa/fa rats (P 0.02) is similar to that seen in normal animals. Moreover, fasting for 48 h (which lowers leptin and raises corticosterone levels) reduced hypothalamic IL-1 mRNA levels by 30% (P 0.02), and this decrease was fully reversed by refeeding for 12 h. Thus leptin and GCs exert opposing effects on hypothalamic IL-1 gene expression, and corticosterone plays a physiological role to limit expression of this cytokine in both the presence and absence of intact leptin signaling. Consistent with this hypothesis, systemic leptin administration to normal rats (2 mg/kg ip) increased hypothalamic IL-1 mRNA levels twofold (P 0.05 vs. vehicle), an effect similar to that of ADX. These data support a model in which expression of hypothalamic IL-1 is subject t
    corecore