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ABSTRACT 

The liver is an immunoregulatory organ in which a tolerogenic 
microenvironment mitigates the relative “strength” of local immune responses. 
Paradoxically, necro-inflammatory diseases create the need for most liver 
transplants. Treatment of HBV, HCV, and acute TCMR have redirected focus on 
long-term allograft structural integrity.  Understanding of insults should enable 
decades of morbidity-free survival after liver replacement because of these 
tolerogenic properties.  

Studies of long-term survivors show low-grade chronic inflammatory, fibrotic 
and microvascular lesions, likely related to some combination of environment insults 
(i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. 
The resultant conundrum is familiar in transplantation: adequate immunosuppression 
produces chronic toxicities, while lightened immunosuppression leads to 
sensitization, immunological injury, and structural deterioration.  The “balance” is 
more favorable for liver than other solid organ allografts.  This occurs because 
unique hepatic immune physiology and provides unintended benefits for allografts by 
modulating various afferent and efferent limbs of allogenic immune responses. 

This review is intended to provide a better understanding of liver immune 
microanatomy and physiology and thereby: a) the potential structural consequences 
of low-level, including allo-antibody-mediated injury; and b) how liver allografts 
modulate immune reactions.  Special attention is given to the microvasculature and 
hepatic mononuclear phagocytic system (MPS).  



INTRODUCTION 

The liver is an immunoregulatory organ (1-5) in which a tolerogenic 
microenvironment mitigates the relative “strength” of local immune responses. 
Paradoxically, necro-inflammatory diseases still create the need for most liver 
transplants. Effective anti-HBV(6, 7) and anti-HCV(8, 9) medications and control of 
acute TCMR have, or will shortly, largely eliminate the negative impact of these 
insults, redirecting therapeutic focus toward long-term allograft structural integrity. 
Perhaps a better understanding of unaddressed insults will widely enable decades of 
morbidity-free survival after liver replacement.  

Indeed, emerging evidence shows low-grade chronic inflammatory, fibrotic 
and microvascular lesions, which are likely related to some combination of 
environment insults (i.e. abnormal physiology), donor-specific antibodies (DSA), and 
T cell-mediated immunity, are associated with suboptimal immunosuppression and 
chronically threaten architectural integrity. The resultant conundrum is familiar in 
transplantation (reviewed in (10)): adequate immunosuppression reliably produces 
chronic toxicities, while lightened immunosuppression often leads to sensitization, 
immunological injury, and structural deterioration.  The “balance”, however, is 
substantially more favorable for liver than other solid organ allografts. 

Liver immunology (1-5, 11, 12) and liver allograft “tolerogenicity” (13-15) are 
the subject of excellent recent reviews, but two areas remain incompletely 
addressed:  the biliary tree and antibodies as immunological effectors and 
modulators, included herein.   

IMPORTANT DIFFERENCES BETWEEN LIVER AND OTHER SOLID ORGAN 
ALLOGRAFTS 

1) The liver can be viewed as two inter-dependent organs with a dual afferent
blood supply:

a. biliary tree: “centrally-placed” tissue whose health is critical to 
parenchymal integrity. Supplied by arterial blood draining into a 
typical capillary network, which like kidney and heart, is susceptible 
to ischemic and immunological insults(Figure 1).

b.hepatic parenchyma: the bulk of liver mass which envelops the biliary 
tree and contributes greatly to tolerogenicity. Supplied by partially 
de-oxygenated low pressure portal venous blood, rich in intestinal 
bacterial products and pancreatic hormones, feeds into a unique 
sinusoidal bed(Figure 2).

2) Constant exposure to intestinal microbial products fosters a “tolerogenic”
microenvironment with relatively low co-stimulatory and MHC class II
expression on antigen presenting cells (APC), including the endothelium
(2, 5, 12, 16, 17).

3) Sinusoids are the majority microvasculature, lined by LSEC and KC (2, 5,
12, 16-19), which scavenge particulates/antigens, and regulate immune
responses (2, 5, 12, 16-18, 20-22), liver regeneration(23-25), and
fibrogenesis(25, 26).

4) Tremendous parenchymal regenerative abilities include collagenase-
mediated matrix remodeling (24, 27), which can reverse fibrosis (28, 29)
after elimination of immune injury.  This is not observed with other solid
organ allografts(30).



5) A variety of immune leukocytes (classical T and B cells, NK, NKT, and γδ-
T cells(31, 32)) are normal hepatic inhabitants, including hematopoietic
stem cells (33, 34).

HEPATIC ARTERIAL BLOOD SUPPLY AND THE BILIARY TREE 
More than seven arteries supply different bile duct territories, including the 

cystic, posterior superior pancreatico-duodenal, right and left hepatic, and retro- p
ortal collectively providing 95% of arterial blood(35). Arteries encase the biliary tree 
as far as the peripheral branches, like ground vines around tree trunks(Figures 1 and 
2). Flow is regulated by systemic pressure and intra-hepatic resistance vessels 
including pre-capillary sphincters (36, 37). Typical of splanchnic arterial systems, 
three anastomotic patterns occur on bile duct walls: a network, a longitudinal 
anastomotic chain, and an arterial circle(35). 

Intra-hepatic portal tract hepatic artery branches divide into axial 
(accompanying) vessels (38, 39) that branch into peribiliary (connecting) arterioles 
(38, 39). These taper to form the peribiliary capillary plexus (PCP), which supplies 
bile ducts(38, 39) (Figure 2). The axial arteries also send capillary branches to: a) 
portal connective tissue; b) portal vein vasa vasorum; c) direct arterioportal 
anastomoses alongside septal venules supplying the lobules, from which regular 
short oblique arterioles enter the adjacent venule or sinusoids (panel 2 Figure 2) (38, 
40); and d) isolated arteriolar branches that perforate deep into lobules, possibly 
supplying hepatic vein vasa vasorum and the liver capsule(41). 

The PCP has 2 - 3 well-developed layers in large intrahepatic/extrahepatic 
bile ducts (42): inner, mostly afferent, subepithelial capillaries (like renal peritubular 
and cardiac interstitial capillaries); an intermediate and an outer, mostly efferent, 
layer (43) (Figures 1 and 2).  Outer PCP layers end in post-capillary sinuses PCS) - 
slightly dilated endothelial conduits linking to sinusoids and portal vein branches 
(38, 39).  PCP layers become ill-defined in smaller interlobular (<100 µm) bile ducts 
and attenuate to scattered capillaries: smaller interlobular bile ducts and ductules 
are accompanied by up to three CD34+ capillaries within <15µm from the basement 
membrane (42, 44). 

Arterial/PCP insufficiency causes ischemic cholangiopathy(45-47).  Deep 
PCP injury before transplantation predicts post-transplant biliary strictures in extra- 
corporally perfused livers(48-50). Chronic biliary disease(44) and chronic 
rejection(51, 52) reduce axial, connecting artery and PCP density around small 
interlobular (< 100 µm) bile ducts, analogous to heart and kidney allografts(53-55). 
Their destruction likely reflects imbalances between pericyte and edothelial cell repair 
(56, 57). 

The Hepatic Artery Buffer Response (HABR) (Figure 3; HABR) refers to the 
reciprocal regulation between portal venous and hepatic artery flow.  It is independent 
of innervation and normally suppressed by normal portal venous flow “washout” of the 
locally-produced major mediator and vasodilator, adenosine. Adenosine washout 
maintains physiological arterial constriction (58-61).  Other mediators, such as nitric 
oxide, carbon monoxide, and H2S are also likely HABR contributors (58, 59).  Portal 
venous flow reduction (less washout), usually because of sclerotic occlusion, causes 
arterial dilation and compensatory increased lobular arterial blood flow via direct 
arterial conduits and arterio-venous anastomoses at lobular edges or arterial supply 
to lobules, discussed above.  Interestingly, adenosine also can inhibit lymphocyte 
activation and/or promote Treg expansion(62).  Chronic arterial compensation 
sustains hepatocyte viability/growth 



causing nodularity, or nodular regenerative hyperplasia, common in long-surviving 
liver allografts(63).  Conversely, portal venous hyperperfusion in small-for-size livers 
causes arterial vasospasm/constriction(58, 61).  By contrast, reduced arterial 
perfusion does not alter venous flow, which is driven by splanchnic venous return.  

BILIARY TREE 
The centrally-placed biliary tree, lined by a single layer of biliary epithelial cells 

(BEC) under hormonal and neural control, is an excretory conduit for hepatocyte-
synthesized bile, excretes enzymes and mucins, and modulates bile water content 
and composition (64, 65), which contains bile salts (61%) needed for fat 
emulsification/absorption; fatty acids (12%), cholesterol (9%), phospholipids (3%), 
bilirubin (3%), >250 proteins (7%), and other endogenous and exogenous 
compounds, including bio-transformed drugs (66, 67).  BEC HCO3

- secretion
normally maintains an alkaline pH preventing the uncontrolled permeation and 
damage from hydrophobic bile salts, discussed below(68).  Despite its importance to 
parenchymal health and participation in innate and adaptive immune responses (69-
71), the biliary tree is usually overlooked in comprehensive liver immunology reviews 
(1-4, 11, 12).  However, the high incidence (~20%) of complications (72-75) and 
susceptibility to AMR-mediated PCP damage (76-78) mandate greater attention in 
this review. 

Intra-hepatic and hilar/extra-hepatic biliary tree development from 
hepatoblasts and hepatic diverticulum, respectively, is closely linked with 
arterial/PCP development(79), fusing into a seamless drainage conduit prior to birth 
(42, 79, 80). BEC and hepatocytes serve as progenitors for the intra-hepatic biliary 
epithelium(81, 82); extra-hepatic BEC renewal appears to depend on residual BEC 
and stem cells at the base of peribiliary glands(49, 83-85).   

Secretory immunoglobulin A (sIgA) (86), synthesized by plasma cells near bile 
ducts (87, 88) dominates bile immunoglobulins (89), but IgG and IgM are also 
present (90, 91). They neutralize pathogens and bacterial toxins (92); complex with 
free antigens, facilitating excretion thereby reducing systemic responses (93, 94); 
and bind intracellular pathogens during transcytosis(95).  

BEC possess an array of anti�microbial defenses, such as lactoferrin and 
lysozyme from peribiliary glands (96); defensin(97), cathelicidin(98, 99) and human 
β�"efensin 1 (hBD�1). Trefoil family factor proteins protect BEC by increasing 
mucous viscosity in large bile ducts and peribiliary glands(100�103). Others are 
inducible(104�106), such as hBD�2 in large bile ducts after infection (107).  Some 
innate defenses also modulate adaptive immunity by recruiting CD4+ T cells and 
immature dendritic cells(108).

BEC also express TLR (71) whose ligation triggers cytokine elaboration to 
recruit and activate T-cells, macrophages, and NK cells.  Human BEC also 
constitutively express IL-8 and MCP-1 (109-112) - important chemotaxins for 
neutrophils, monocytes, and T cells – and further upregulate these after endotoxin 
(via TLR4) or inflammatory cytokine exposure (although IFN-γ inhibits IL-8 
production). These and other inflammatory cytokines increase BEC immune 
“visibility” by increasing constitutive ICAM-1, LFA-3, MHC I and II (70, 71, 113-118) 
and the molecular machinery for non-professional APC functions, including co-
stimulators CD80/CD86 (70, 117-120). This enables BEC to elicit recall responses in 
primed T cells (116, 121, 122), but not naive T-cell activation (123).  Some 
dampening of immune responses is also possible as PDL1 and PDL2 are also 
induced by IFN-γ (124).   



Ischemic, immunological, and technical insults damage BEC and bile ducts (21, 
125, 126).  Preservation/reperfusion injury in DCD and ECD donors cause PCP 
microvascular thrombosis and ischemia (127-129).  Re-oxygenation causes more 
damage than hypoxic injury (130), which enhances BEC TRAIL-mediated apoptosis 
(131).  Immunological injuries include direct cytotoxic lymphocytic damage and indirect 
ischemic damage from disruption of the PCP by DSA or isoagglutinins (78, 130, 
132-137).  Pathogenic mechanisms involved in antibody-mediated PCP damage are 
similar to those described for kidney and heart allografts(138, 139). BEC apoptosis 
can be autocrine, paracrine and/or leucocyte-mediated (TNF-α, Fas/FasL, 
TNF-related apoptosis-inducing ligand (TRAIL)) (140-145), but susceptibility can be 
further modulated by bcl-2 family members. 

Inner PCP destruction and local micro-environmental disruption likely account 
for poor BEC wound healing(74, 146) resulting in ischemic cholangiopathy(reviewed 
in (74, 147-149)). Necrotic BEC and senescence-associated secretory phenotypes 
(SASPs)(150) impede wound healing by promoting inflammation and subsequent 
stricturing(151, 152).  Suboptimal BEC regeneration might also contribute (72, 153, 
154). 

Bile composition influences wound healing: hydrophobic bile salts at low 
concentrations elicit BEC ROS resulting in apoptosis(72) and necrosis(155); 
conversely, hydrophilic bile salts (e.g. ursodeoxycholic acid(UDCA)) protect BEC 
from hydrophobic bile salt-induced injury (reviewed in (155)). UDCA improves liver 
injury test profiles and the incidence of early biliary tract complications (156, 157). 
Ischemic injury also impairs HCO3

- secretion (130, 131, 136, 158) increasing
susceptibility to hydrophobic bile salt injury.   

PORTAL VENOUS BLOOD SUPPLY AND THE “TOLEROGENIC” PARENCHYMA 

Large proximal conducting portal veins (>0.3mm diameter) give rise to smaller 
hierarchically branching parenchymal/distributing veins responsible for substance 
exchange with hepatocytes and maintaining liver microarchitecture (159, 160).  The 
conducting, but not the parenchymal, portal vein branches are mirrored with 
corresponding hepatic veins that drain sinusoids into inferior vena cava (160). 

Parenchymal veins follow a strict branching pattern:  each first order branch 
supplies ~1mm3 venocentric parenchymal mass and begets 11 perpendicular, 
second-order branches that lie in terminal portal tracts on light microscopy (the classic 
portal triad (159)).  These branches outnumber hepatic vein branches 6:1, creating the 
“classic” hepatic lobule (Figure 2) demarcated by portal tracts at vertices of a hexagon 
surrounding a central vein.  Afferent portal venous blood periodically exits portal tracts 
to travel along the hexagon edges in septal venules. Together they align successively 
as seams across a curtain of intervening anastomosing sinusoids along an interlobular 
“vascular septum” (159, 160) from whose face blood flows towards the hepatic 
veins(Figure 2).  

Venous blood first enters the vascular septum sinusoids at right angles from 
the septal venules through short CD34+ inlet venules, which retain a classical 
basement membrane. The hepatic microcirculatory subunit (MHS), cholehepaton, or 
primary lobule is the functional nephron equivalent (161): a hepatocyte cone supplied 
by one inlet venule and draining bile into one bile duct (Figure 2) (159, 161, 162).  
Flow from inlet venules feeds a distributing network of sinusoids (see (Figure 2a)) 
(septal zone of inflow, sandwiched between consecutive septal venules). From that 
inflow zone surface (estimated at 1.7 m2 total) the distributed flow enters the 



remainder of the lobule like a “wave front” into radial sinusoids (Figure 2b) to exit the 
lobule at terminal hepatic veins. 

Sclerosis of portal, septal, and/or inlet venules may be attributable to chronic 
immunosuppression(63), DSA(135, 163, 164), or other insults, often manifests as 
NRH(63) via the HABR, in long-surviving grafts(165, 166).  Portal inflammation with 
“interface hepatitis” associated with de novo DSA in long-surviving liver allograft 
recipients(135, 163, 164, 167) might represent mononuclear septal or inlet venulitis, 
but work is needed to mechanistically clarify the association. 

Liver Sinusoidal Endothelial Cells (LSEC) 
LSEC comprise ~50% of non-parenchymal liver cells and channel blood from 

portal vein branches into “central veins” – the smallest efferent hepatic veins.  They 
interface between sinusoidal content and Disse’s space (Figure 4), into which they 
regulate leukocyte transmigration with induction of adhesion molecules. Transcellular 
fenestrations (fenestrae, Latin for window; average ~100 nm in diameter): a) are 
arranged in distinct groups (sieve plates); b) occupy ~6-10% of the surface area (168); 
c) lack diaphragms, or proteinaceous “screens” that create a selectively permeable 
barrier to particulates; and d) change size/diameter to modulate bidirectional flow of 
particulates (e.g. chylomicron remnants and lipoproteins), cells or cell processes(5).  
LSEC renew from local expansion of liver-based progenitors and bone marrow 
precursor recruitment after severe injury or partial hepatectomy(23). 

Steady state LSEC express vascular (e.g. CD31, vWFnegative to low, Ulex lectin 
binding, and CD105(169)) and lymphatic endothelial markers (CD31, LYVE-1, VAP- 1, 
and Reelin) (169, 170), generate lymph(171), and lack a typical basement membrane.  
LSECs also show innate and adaptive immune responsiveness, expressing multiple 
TLR, MHC I and II (normally at low levels), co-stimulatory molecules (CD80, CD86) 
and adhesion molecules (ICAM-1) (reviewed in (5)). LSEC internalize soluble 
antigens, immune complexes and other particulates (5, 172-174), which enables them 
to compete with DC for pathogen monitoring (reviewed in (5, 17)).  In steady state or 
mild injury, cross-presentation of blood-borne antigens can cross-tolerize CD8+ T cells 
and promote expansion of regulatory T cells (5, 17). Conversely, innate danger signals 
(viral RNA, CpG DNA, activated complement, FcR engagement) can override 
“tolerogenic” tendencies, switching LSEC to recruit and directly stimulate CD8+ and 
CD4+ effector T cells (5, 17).  They also have the potential to influence liver 
regeneration and fibrosis(12, 17, 23, 25, 26, 175).   

Injury (26, 176-180), fibrogenesis (26, 169, 176, 178), and aging (181-183) 
cause LSEC changes referred to as “(pseudo-)capillarization” including defenestration, 
basement membrane deposition (type IV collagen, laminin, and fibronectin(178, 184, 
185)), antigenic modulation (neo-expression or upregulation of CD31, CD34, vWF), 
inability to quiet stellate cell activation(23, 26, 177), altered hepatic lipid 
processing(175), and impaired cell-cell communication(26, 175, 177, 
178). Immunohistochemical monitoring in operationally tolerant liver allograft 
recipients(186) can detect early LSEC changes, such as capillarization and nearby 
SMA+ SC activation, before more significant damage occurs (185-187).   

Lymphatic Flow: The liver is the largest lymph producer: ~25-50% of thoracic duct 
lymph(188) accepting fluid from portal, sublobular, and capsular networks (171, 188-
191).  Most lobular lymph is initially formed in Disse’s space with a smaller PCP 
contribution (~10%) (171, 188-191) moving toward portal tracts(171, 189, 192) 



where protruding collagen fibers delineate conduits to intra-portal terminal lymphatic 
capillaries (171) (Figures 2 and 4).  Terminal lymph capillaries lack a continuous 
basement membrane, similar to LSEC, and are lined by endothelial cells that: a) 
express numerous but non-exclusive markers, (reviewed in (171, 193)); b) are 
anchored to surrounding collagen and elastin fibers (171); and c) facilitate fluid and 
cell entry via specialized intercellular junctions that restrict reflux (171, 188-191, 194).  
These coalesce into muscular conducting vessels that empty into hilar lymph 
nodes(171, 188-191).  Perivenular lymph likely travels along similar collagen bundles 
(171, 188-190, 192, 194) into terminal lymphatic capillaries in sublobular vein walls 
that drain into subdiaphramatic nodes(171, 189, 190, 192) (see below). 

Lymphatic ligation at transplantation initially results in intra-peritoneal DC-rich 
chylous leakage (1-3 liters/day) then directed to regional diaphragmatic nodes (195). 
Lymphatic drainage spontaneously regenerates after some months (196), but the 
effect on DC activities is unknown. 

Hepatic Veins: This post-sinusoidal drainage system accepts sinusoidal blood 
beginning at terminal hepatic veins/venules or central veins located at the center of 
the lobular hexagon. Progressive coalescence of branches mimicking conducting, but 
not distributive, portal veins produces the classical lobule.  These drainage conduits 
are targeted in both TCMR and AMR, perhaps related to local DC and terminal 
lymphatics (197, 198). 

MAJOR BLOOD GROUP AND HISTOCOMPATIBILITY COMPLEX ANTIGEN 
EXPRESSION AND ORGAN CHIMERISM 

Recognition that de novo anti-MHC  DSA can decrease graft survival, 
especially when inflammatory comorbidities like recurrent HCV exist renewed interest 
in MHC antigen expression (76, 199-201). Cataloging tissue MHC antigen expression 
and organ composition/chimerism after transplantation demonstrates potential targets 
for anti- MHC DSA and the effect of donor-recipient MHC non- identity between 
various cell populations (e.g. recipient T cell-donor LSEC).  

Immunohistochemistry staining of “normal” livers (donors, incidental operative 
biopsies, etc.) shows strong, diffuse, ABO and class I MHC antigen expression on all 
cells, albeit the latter is weaker on hepatocytes (202-214) (Table 1).  Liver MPS cells 
also show MHC class II staining, but weaker than similar cells within other organs (2, 
12, 16), with DQ being weakest(202-215).  Portal and central vein and hepatic artery 
endothelium is normally class II negative.  Precise descriptions for PCP, lymphatic 
and inlet venule endothelia are lacking, but portal capillary endothelial class II 
expression appears weaker and patchier than renal peritubular (203, 216) or heart 
interstitial capillaries(203, 217). Possible explanations include class II downregulation 
by IL-10 and prostaglandins from endotoxin-stimulated Kupffer cells (2, 218, 219).  
Although PCP are fed by the systemic circulation, they are bathed in lymph fluid 
produced in the sinusoids.  However, more work examining specific compartments is 
needed. 

Inflammatory stimuli (esp. γ-interferon) heighten MHC class I expression and 
induce class II in endothelia, BEC, and hepatocytes (DR>DP>DQ) (202-215). 
Practical consequences include variable DSA targeting, immune stimulatory 
capability, and effector efficacy dependent on immune complex density (139, 220, 
221) provoked by co-existent pathology (e.g. TCMR, HCV) (76, 199-201) providing 
the potential for improved outcome with target antigen modulation (222, 223). 



Recipient bone marrow-derived hematolymphoid cells (e.g. lymphocytes, 
macrophages/Kupffer cells (224-229), and dendritic cells) replace the majority of 
donor equivalents within months after transplantation (210, 225, 226, 230).  Yolk 
sac-derived KC replacement confounds steady state ontogenic classification (231)), 
but microenvironmental influences reprogram chromatin to largely match tissue- 
specific identities of the original embryo-seeded population (232). Whether allograft 
disease, immunological mismatch or immunosuppression affects that “naturalizing” 
process is unknown, but intuitive. 

Stellate and myofibroblastic cells can arise from BM-derived precursors(233, 
234) and might contribute up to ~12% of myofibroblasts in sex-mismatched liver 
allografts(235), but few studies critically address this question.  Initial enthusiasm for 
reports of recipient-derived hepatocytes and BEC in allografts (236, 237) dwindled 
when subsequent data questioned its magnitude (229, 230, 238-240).   

Most reports suggest no/sparse replacement of the donor endothelium (226, 
228-230, 241, 242); the few that differed (237, 243) did not find a correlation with 
tolerance (243).   

Hepatic stellate cells (HSC), portal fibroblast/myofibroblasts, and myeloid 
suppressor cells 

HSCs (peri-sinusoidal cells, fat-storing cells, and lipocytes) comprise ~10% of 
all liver cells and are the major source of myofibroblasts and fibrosis(244-250). They 
reside in Disse’s space, throwing out long cytoplasmic extensions (~40 µm)(251), 
and hold ~80% of Vitamin A and retinoid stores(252, 253).  Depletion models (254) 
identify HSC as the main contributors to liver fibrosis (255, 256) (above portal 
fibroblasts and myeloid suppressor cells (257-259)) and so therapeutic approaches 
to arrest/reverse fibrosis target HSC(260-262). 

Quiescent human HSC express vimentin and type III intermediate filament 
protein, suggesting a myogenic or fibroblastic origin (263).  Quiescence is 
maintained in part by LSEC via VEGF-mediated nitric oxide (NO) production (264, 
265). After liver injury or exposure to danger signals like endotoxin(266, 267), stellate 
cells activate, losing retinoid stores and trans-differentiating into proliferating, 
contractile myofibroblasts (α-smooth muscle actin (α-SMA)+) (244) that produce 
collagen, other ECM components and trophic factors (263, 268, 269).   

HSC activate in two stages (246, 270).  “Initiation” involves transdifferentiation, 
proliferation and migration to injury sites (271-275).  “Perpetuation” involves 
autocrine and paracrine signals, the latter from damaged/apoptotic hepatocytes 
(including TGF-β1 and ROS), activated KC, inflammatory cells and altered ECM 
composition(246, 270, 276-279).  Activated HSCs elaborate inflammatory cytokines 
and chemokines (280-288).  Examples that facilitate fibrosis include neutrophil 
recruitment (IL8), facilitating recruitment of CD8+ T cells to porto-septal areas 
(CCL2) in chronic viral hepatitis (280, 282, 289-293).   

Inflammatory cell-derived IL-17A induces HSC collagen type I expression 

directly and indirectly via TGF-β from KC (294). Together, these damage signals 
promote a relative predominance of tissue inhibitors of MMP (TIMPs) over 
metalloproteinases (MMPs), which favors net ECM deposition (295).  Activated HSC 
(SMA+) have been used to predict fibrosis development in HCV+ allografts(296).  If 
the injury resolves, HSC can revert to quiescence or delete by apoptosis (297-307). 

Activated state persistence results in fibrosis progression (26, 308). 
Nevertheless, when injury resolves, immunomodulation by HSC can instead limit 
fibrogenesis(309) via: a) anti-inflammatory mediators such as IL-10 (287, 288); b) 



expansion of FoxP3+ regulatory T cells; c) apoptosis of CD4+ and CD8+ T cells in 
fibrosis areas (287, 310); and d) stimulation of hepatocyte NO synthesis (285, 311), 
which together lead to T cell suppression (312, 313). 

Portal fibroblasts (PFbs):  In contrast to HSC, PFbs (314), lack vitamin A 
autofluorescence, GFAP, NGFRp75 and synaptophysin expression (244, 314), but 
early after bile duct ligation/cholestatic injury (257), or isolation (315) activate and 
differentiate into myofibroblasts expressing α-SMA, fibulin-2, elastin, NTPDase2, 
Thy1 (314, 316-318) and ECM including collagen type I. PFbs likely contribute to 
non-biliary fibrogenesis (e.g. viral hepatitis, alcohol) (318), but much remains 
speculative because of difficulty to unambiguously discriminate them from activated 
HSCs (257-259).  

Myeloid-derived suppressor cells (MDSC) are a heterogeneous bone marrow-
derived population (319) identified in humans as CD11b+ CD33+MHC-DRlow 
cells(320).  MDSC are induced by an inflammatory microenvironment (e.g. viral 
hepatitis (321-323)) and mediators (324, 325), or from peripheral blood mononuclear 
cells (PBMCs) by HSC (326). They potently suppress T cell function (327), while 
immunoregulatory functions likely affect fibrogenesis (255) including HSC 
fibrogenesis via IL-10 secretion (328), although probably with redundancy of effect 
(329).   

THE MONONUCLEAR PHAGOCYTE SYSTEM (MPS) 
Three nominal cell types comprise the human hepatic MPS: DC, monocytes 

and macrophages- resident and acquired (Figure 4).  Innate and adaptive immune 
functions assisted by resident MPS cells are comprehensive, affecting hepatic 
responsiveness to immunological, toxicological, metabolic or preservation/reperfusion 
challenges and regeneration, fibrogenesis and fibrosis resolution (reviewed in (19, 
330-332)).  Macrophage reactions are conditioned by their tissue environment and 
they are often among initial responders to disease. Their broad response repertoire 
invites therapeutic targeting.  Although broadly comparable among species, MPS cells 
also show significant genetic regulation, phenotype, and prevalence differences 
(333-338). 

Resident macrophages are sculpted by tissue specialization: 
transcriptomic/marker diversity among resident macrophages from different tissues 
exceeds their divergence from other myeloid cell types (339, 340).  Nevertheless, 
different resident macrophages and monocyte-derived macrophages share steady 
state transcriptional signatures largely related to phagocytosis (337, 339). Steady 
state liver resident KC and monocytes function as independent mature lineages 
(341), but in disease, phenotypic boundaries become blurred (342-344). 

Dendritic Cells (DC) and other non-professional APC 
Classical/myeloid and plasmacytoid DC, evolve from a common bone 

marrow-derived DC precursor independent of monocytes and depend on FMS-like 
tyrosine kinase 3 ligand (FLT3L) for local hepatic expansion (231, 345-347).  KC 
steadily recruit circulating recipient DC precursors in the sinusoids, which migrate 
into Disse’s space (348), and enter portal-based terminal lymphatic capillaries, 
followed by drainage to regional nodes (171, 349-351) (Figure 4).   

Most DC reside in portal tracts and around central veins (197, 211, 352), 
perhaps related to pre-lymphatic collagen fiber tracts(171, 188-190, 192, 194). 



Normal liver DC have low co-stimulator expression (347, 353, 354) and readily 
produce IL-10 after TLR4 ligation - a tolerogenic state encouraged by abundant 
tissue IL-10 and TGFβ and by direct contact with adjacent sinusoidal endothelium 
(355).   

Donor DC remain capable of triggering immunogenic responses critical to 
TCMR, albeit less efficiently than lymphoid tissue-based DC (4, 347, 353, 356-359). 
Recipient T cells directly recognize allogeneic MHC on donor DC that migrate to 
recipient central lymphoid tissues (197, 360) and residual donor DC within the 
allograft (197).  Mass donor DC and other leukocyte migration early after 
transplantation contributes to activation-induced deletion (361-365).  Their long-term 
persistence might contribute to tolerance maintenance (366, 367).  Recipient DC 
uptake alloantigen and indirectly present or acquire whole non-self MHC from donor 
DC by trogocytosis or exosome uptake and present it semi-directly (368, 369). 

Plasmacytoid DC regulate NK cells and are usually tolerogenic (influenced by 
the gut microbiome (370)), but can activate CD4 T cells when strong innate activation 
signals are present.  Plasmacytoid DC and mature CD14dim sentinel monocytes rove 
within sinusoids patrolling for virus.  They react to engulfed or cytosolic virus sensed 
via TLR7 or TLR9 by secreting type I interferons (358) and accumulate in sinusoids 
during viral and non-viral liver disease (371-373).  pDC may also be responsible for 
cytokine storm syndromes driven by viral activation of TLR (374). 

“Non-professional” APC include LSEC, BEC, hepatocytes, KC, HSC, and 
MDSC (3).  KC cross-present antigen captured from other cells (375), while 
MHC/MHC molecule transfer between different cells through trogocytosis or 
exosomes (MHC dressing) potentially enables a variety of unconventional antigen-
specific activation or suppression of T cells in disease (368, 369).  Interactions 
between non-professional APC and naïve CD8 T cells usually fosters tolerance due 
to low co-stimulation and inflammatory signaling needed for priming (reviewed by 
(376)), such that liver-activated CD8 T cells can be rapidly cleared by suicidal 
emperipolesis within hepatocytes (377) or by apoptosis (378).  

However, liver macrophages can activate naïve CD4 T cells to sustain local 
functional CD8 T cell generation (379).  Some monocyte-derived cells transmigrating 
from sinusoids, particularly post-phagocytic, acquire an immune regulatory 
transcriptome and phenotype resembling DC (“monocyte-derived DC” or “antigen-
presenting macrophages”) (380-383); differences from classical DC are not clearly 
defined (195, 231, 384). 

Kupffer Cells (KC) 

KC, ~15% of all liver cells, are relatively long-lived, resident, sinusoidal-based, 
tissue macrophages with 2-3 fold periportal predominance, where they tend to be 
larger and more phagocytic (385-387).  Most KC in resting livers lie between or cling 
over LSEC (Figure 4) with anchors through larger fenestra, have a ruffled surface 
with processes extending to sample slow flowing sinusoidal blood (388) and derive 
from extra-embryonic yolk sac hematopoietic precursors (389, 390), whose progeny 
migrate to the liver and accommodate with local mciroenvironmental signals (232, 
391).  Short term, KC are stellate and immobile (392), but they redistribute over 
weeks to form granulomas after insults, with their sinusoidal place supplanted by 
recruited monocyte-derived cells (393). In the steady postnatal state mature rodents 
and perhaps human KC renew themselves as necessary (enhanced with IL4 (343, 
394)) without requirement of other input sources such as bone marrow-derived 



monocytes (395-400).  KC, however, are replaced within months after 
transplantation (210, 225, 226, 230). 

Hepatic microenvironmental signals determine the homeostatic set points and 
the KC response spectrum but they excel at capture and clearance, including: 
circulating particles (>230 nm (174, 344, 401, 402)), circulating bacteria (392, 393), 
and oxidatively damaged red cells and haptoglobin-haemoglobin complexes, 
expedited by scavenger receptors (403, 404).  Opsonized particles and pathogens 
and immune complexes(405) are recognized via Fc and complement C3 receptors – 
primarily CRIg (406).  KC manage steady state antigenic particle phagocytosis with 
tolerance: patrolling antigen-specific regulatory CD4 T cells arrest on KC and are 
activated (but CD8 T cells are not), inducing a KC-dependent systemic tolerance 
(344). 

Bacteremia is cleared by direct engulfment or trapping and interaction with 
other innate defenses, such as platelets to encase the bacteria (407), or neutrophils, 
for which the KC surface becomes a platform to kill bacteria.  Subsequent clearance 
of apoptotic neutrophils by KC may return it to the native tolerogenic state (408-410). 
After extensive phagocytosis, macrophages/KC may migrate to portal tracts (411). 

Relative hepatic resistance to AMR is an incidental byproduct of vigorous KC 
clearance of alloantibody complexed with soluble MHC class I, along with activated 
complement and platelets (22); KC depletion reverses this resistance(20, 21, 412, 
413). 

Identification:  KC are difficult to isolate from liver in a representative way (339, 
414), rapidly alter phenotype upon extraction (415), display a liver microenvironment 
epigenetic dependence and are less well-studied than other tissue macrophages 
(343, 393).  Although difficult to sensitively discriminate on routine histology (416), 
KC appearance yields clinically relevant clues: hypertrophy and ceroid-loading 
(suggests recent cell debris phagocytosis and marks injury sites (416)); 
phagocytosed bile or foamy macrophages (indicate cholestasis); iron accumulation; 
erythrophagocytosis; fusion; topographic association with specific inflammatory cells 
(e.g. eosinophilic microvasculitis in AMR). 

There is no KC-specific immunophenotypic marker, but useful practical 
markers in formalin-fixed biopsies combined with morphological assessment include 
CD68 (417-421), CD163 (404, 417, 422, 423)) and 25-F9 (424, 425). CD68 also 
marks plasmacytoid DC, while CD68, CD163 and other general resting macrophage 
markers such as CD64 and MERTK are expressed on some monocytes/monocyte-
derived cells (339, 426-431).  KC immunophenotype is described for various immune 
markers in clinical biopsies of normal liver, back table biopsies or stable grafts (424, 
425, 432-439) but discrimination from infiltrating monocyte-derived cells in disease 
settings is not always possible. 

Proteomic-transcriptomic screening identify highly expressed 
immunohistochemical signatures of resting and stimulated macrophages: 
phagocytosis, redox control, adhesion, fibrinolysis, lipid metabolism, etc. (440). 
Some markers are pleiotropic (e.g. Galectin-3) or not macrophage-restricted (e.g. 
transglutaminase 2 and galectin-3: hepatocytes; CD206: sinusoidal endothelium), 
necessitating multiplex staining for macrophage-specific evaluation. 

Monocyte-derived cells in the steady state:  Circulating monocytes do not reflect 
those sequestered by the hepatic microcirculation (441, 442). Human and murine 
monocytes show broadly comparable maturing populations, but different proportions 



and gene expression patterns (430, 442). In the steady state, predominantly 
immature CD14+ (“classical”) circulating monocytes arrest and transmigrate into 
Disse’s space, acquiring increased MHCII; the majority patrol extravascular tissue 
as phagocytes with an anti-inflammatory tolerogenic phenotype (reduced response 
to LPS; suppressive of T cell activation) (443).  Most such transmigrated monocytes 
probably traffic to afferent portal tract lymphatics and on to regional lymph nodes 
(427). Less mature monocytes (CD14+) may pass through the sinusoids and exit in 
hepatic venous blood, or may arrest and transmigrate past sinusoidal endothelium 
(dependent on VAP-1, CX3CL1 and VCAM-1(444)).  A minority reverse 
transmigrate back into the sinusoid, acquiring CD16, increased scavenger receptors 
(CD163 and CD206) and a pro-inflammatory immune-activating capacity to secrete 
γ-IFN and induce effector T cells (443).  

Thus the sinusoidal endothelium fosters both recruitment and then functional 
and anatomic partitioning of monocytes into pro- and anti-inflammatory phenotypes. 
CD16high (“non-classical”) intravascular monocytes are small motile cells that patrol 
endothelium for virus, sensed by TLR7 or TLR8 (445), analogous to murine sentinel 
microvascular monocytes (441) that perform low-grade endothelial particle 
scavenging (397, 441, 446) without differentiating to macrophages (339, 427). 
Tissue nucleic acid sensing via TLR7 elicits a mixed luminal capillaritis: monocytes 
cluster and engage neutrophils to kill adjacent endothelium, removing injured or 
infected cells (446).  The fate of such CD16high intra-sinusoidal pro-inflammatory 
monocyte-derived cells is not clear, but may include further transmigration and 
lymphatic egress (447).  

In normal liver and stable liver allografts, portal macrophages are scarce, 
except for occasional ceroid-laden post-phagocytic cells (448). 

Monocyte reactions:  MPS cells accumulate during liver inflammation (including 
TCMR) due to enhanced sinusoidal recruitment of circulating intermediate CD16+ 
monocytes, mediated by constitutive and induced ligands (224, 444).  In fibrosis, 
leukocytes can also exit portal and septal venules (449, 450). Monocytes 
transmigrate and differentiate into proliferating macrophage infiltrates heterogeneous 
for various antigen presentation, cytokine secretion and phagocytosis activities (343, 
381, 393, 436, 451-454). In acute TCMR activated macrophages accumulate in 
portal tracts (438), although perivenular, veno-occlusive and lobular hepatitic 
patterns of active TCMR exist (224, 437, 455-461).  Indeed, KC hypertrophy and 
lobular macrophage infiltrates occur in TCMR, chronic rejection (437, 448, 462) and 
AMR (463-465).  Inflammatory macrophages further contribute to chronic rejection 
by causing apoptosis of bile duct epithelium and hepatocytes via CD40-dependent 
mechanisms (437, 466).  In severe TCMR, KC scavenge major basic protein (PRG2) 
from eosinophils (467), which are macrophage activators (468). TLR9-dependent 
reactions can augment viral immunity resulting in distinctive parenchymal monocyte-
derived macrophage clusters that support effector CD8 T cell proliferation over 
several days with little hepatocellular injury (469). 

Phenotypic macrophage diversity: The “immunologically activated macrophage” 
(470, 471) concept evolved from a non-specific microbiocidal state induced in 
antigen-dependent reactions to encompass “alternative activation” (e.g. helminth 
infection) and dichotomous polarization (M1 or M2 states; later with subtypes) based 
on culture changes after isolated stimuli. The linear model was revised to an 
activation spectrum (472, 473)): helpful to explore macrophage activities in culture, 



but labels do not capture individual macrophage behaviors in tissue pathology (342, 
472, 474).  

Macrophages show transcriptional shifts as tissue responses wax and wane 
(338), and epigenomic memory affects subsequent responses on repeated 
stimulation(475). Transcriptomic analyses found 49 different gene co-expression 
clusters motivating a dozen or so inducible response states to soluble signals alone 
(476, 477). Stimuli segregated into those causing widespread or limited 
transcriptional changes from culture norms, but not along M1-M2 divisions (477). 
Genetic evidence also fails to identify distinct pre-committed macrophage subsets, 
although single cell-resolution studies in disease are lacking.  Instead, 
transcriptomic, proteomic and multiplex marker data highlight process-orientated 
signatures that characterize maturational, and functional states (337, 340, 472, 478). 

Inflammatory macrophage activation is coupled to obligate restraining tissue 
feedback systems involving macrophages themselves (intrinsic reprogramming), 
activated stellate cells, hepatocytes, mast cells and others (343, 454, 479-483). 
Inhibitory systems predominate when inciting stimuli diminish: incoming 
macrophages express increasing regulation (326), scavenging and repair signaling, 
and monocyte-derived macrophages and self-renewal replace depleted KC (343, 
393, 454, 484). 

“Activity” marker interpretation, therefore, requires context: MERTK is 
immunosuppressive, but tied to prior immune activation and TLR engagement which 
it attenuates safely (482).  In this context, MERTK reflects immune activation, 
although by preventing endotoxic shock it is anti-inflammatory (485).  Likewise, 
CD163+/HO-1+ haemophagocytes in macrophage activation syndromes and sepsis 
probably represent a compensatory anti-inflammatory response to excessive innate 
activation (374, 486-489). Therefore, characterization of ‘markers’ by downstream 
actions may not make sense if the upstream context and positioning of that response 
is ignored.  

More complications arise when markers are pleiotropic (e.g. MERTK also 
promotes efferocytosis of dead cells by macrophages (490)). Such considerations 
might explain heterogeneity and “unorthodox” concurrence of culture-defined 
“macrophage polarity” markers in clinical disease infiltrates (342). More 
comprehensive multiplex profiling in diseased tissue sections might better reveal 
individual macrophage engagement (472). 

TOLERANCE MECHANISMS 
Through tolerance, potentially harmful responses to innocuous antigens from 

gut commensals or food are prevented, with incidental benefits for transplantation (5, 
15), but also favoring HCV and HBV persistence resulting in fibrosis/cirrhosis (2, 
491). The tolerogenic MPS phenotype includes moderate surface MHCII (424) with 
little co-stimulatory CD80/CD86 (438) and immunosuppressive factor expression 
including PDL-1 (344) and MERTK (482), combined with IL-10 and TGFβ 
production(3, 5, 14, 15, 17, 32, 344).  KC, DC, and LSEC numbers and 
immunoregulatory state are closely linked with the gut microbiome (11, 492, 493) and 
influenced by pattern recognition receptors (PRR) including NOD-like and Toll- like 
receptors (TLR2-4 and TLR9) (433, 492, 494). PRR report the stream of 
microbial-associated molecular patterns (MAMPs) in sinusoidal blood, such as 
endotoxin and flagellin (2, 495, 496). Depletion of lymphocyte substrates (e.g. 
arginase) and vasoactive molecule secretion (adenosine) promote tolerance as an 
ancillary benefit (Figure 5).  Even during inflammation, factors such as contact with 



activated stellate cells promote tolerance (326). Nevertheless, the resting state is not 
innocuous, as liver deprived of MAMP stimulation shows less reperfusion injury 
(496). 

Recent reviews(2, 3, 5, 13-15, 361, 497-499) attribute “liver allograft tolerance” 
to: 1) donor hematopoietic properties, including: a) long-term microchimerism(225, 
230, 366, 500); b) activation-induced deletion of recipient effector lymphocytes(361, 
362); and c) deficient antigen presentation because of low-level MHC and 
co-stimulator and/or enhanced inhibitory molecule expression(501); 2) recipient 
lymphocyte activation by other “tolerogenic” APC (e.g. LSEC, KC, stellate cells, 
myeloid suppressor cells, hepatocytes) causing apoptosis of effector cells, anergy, 
exhaustion/senescence, and/or Treg generation (Figure 5); and 3) large antigen load 
including soluble donor MHC class I molecule secretion (2, 3, 5, 13-15, 361, 497-499).  
Indeed, chronic exposure (>5 years) to high antigen load appears to contribute to 
lymphocyte senescence and operational tolerance(502-504) and other complications 
in humans (505). 

Early reviews considered potential contributions from donor-specific 
“enhancing” antibodies (506-508) - a concept largely abandoned in the antibody era 
of transplantation(509).  Mechanistic theories for regulatory antibody roles include 
antigen reactive cell opsinization(ARCO)(506-508) and Fc binding and immune 
complex formation(510, 511).  Indeed, Hepatology has mostly viewed antibodies as 
“biomarkers” but not relevant effectors – dismissing their pathogenic potential despite 
decades-old (21, 512) and recent evidence to the contrary in acute(513) and chronic 
settings(167, 514).  

Operationally “tolerant” human liver allograft recipients often harbor circulating 
DSA (186, 515) and might not be considered “truly tolerant” by basic immunologists. 
However, overt tissue damage is not always observed in this setting(186), similar to 
“tolerant” rodent liver(506), “enhanced” rodent kidney allograft recipients, and 
enhanced tumor models (508).  All show circulating class II DSA, but a histologically 
normal graft or non-rejected tumor (506-508). The failure to translate rodent 
enhancement protocols to patients has been attributed to lack of microvascular 
capillary class II expression in rodents, contrasted with its presence in humans (506- 
508).  Whether DSA+ “tolerant” liver allograft recipients, who show low-level 
microvascular MHC class II expression, will eventually indolently manifest DSA- 
mediated injury and fibrosis in areas not accessible to biopsy or be able to withstand 
low-level injury because of “defense” mechanisms, described above, is uncertain.     

Pathological stimuli that break tolerance include live microorganisms, increased 
endotoxin and endogenous damage-associated molecular patterns (DAMPs), such as 
high-mobility group box 1 (HMGB1) from hepatocytes after preservation-related injury, 
which is sensed by TLR4 (516-520). Such stimuli generate second signals (521) for 
antigen presentation and T cell activation by KC (increasing CD80 and decreasing 
PDL-1) (344, 522) and upregulating MHC class II antigens on the microvasculature, 
perhaps facilitating DSA tissue recognition (76, 199).  Interestingly, the presence or 
absence of an effector response in allogenic tumor enhancement models has been 
attributed to the amount of tissue complement activation (523).  CIITA-induced class II 
upregulation can also boost tumor recognition(524).  These observations highlight the 
consilience between immune checkpoint regulation in tumor and transplantation 
immunology(62): the former attempts to activate T cells and/or block inhibitory 
signaling in contrast to the latter. 

Loss of local and systemic Kupffer-dependent tolerance to antigenic particles 
activate immune responses (344).  KC are also capable activators of patrolling 



invariant sinusoidal NKT cells (iNKT), by presenting microbial lipid antigens with 
MHCI-like molecule CD1d (392). The activated iNKT cells arrest, cluster on the KC 
and produce IFN-γ (392, 525). By releasing CXCL16, KC and monocyte-derived 
macrophages recruit NKT cells after acute liver injury, which increases monocyte 
infiltration and fibrogenesis (526). Nevertheless, liver allograft target antigen 
modulation is a reasonable approach to treatment of chronic AMR. 

SUMMARY AND FUTURE DIRECTIONS 

The principle of “form follows function” originally coined by American architect, 
Louis Sullivan, holds true for hepatic immune anatomy.  The positioning and 
microcirculatory design expedite interaction: a) with the external environment 
delivered via the gut/splanchnic circulation; and b) between innate and adaptive 
immunity.  Byproducts are then exported via the lymphatics or bile.  Cellular 
interactions and outcome have been extensively studied and cells cast as primary 
agents of liver injury.  Antibodies are relegated to a biomarker-only role, signaling 
systemic immune activation, but recent evidence argues against this viewpoint, at 
least in allograft livers.   

Specific molecular pathways discussed above have been associated with 
hepatic-based tolerogenic T cell signaling in non-transplant settings and validly 
projected on to an understanding of “hepatic allograft tolerogenicity”. However, a 
knowledge gap is shown by inability to reliably translate these principles to patients. 
Instead, an accelerating phase of observational/discovery science has come to rely 
increasingly on large data sets and cross-platform analyses. This gap might be 
minimized by applying lessons learned in tumor immunology, which mirror images 
transplantation immunology. 

Insufficient attention to basic biology and hypothesis-testing science and 
becoming mired in ever increasing detail without a “systems” understanding will likely 
slow further development.  For example, decades-old knowledge that anti-donor 
antibodies are present in “tolerant” rodent liver allograft recipients led to an 
incomplete understanding and search for biomarkers in “tolerant” human liver 
allograft recipients.  Therefore, a better understanding of MPS biology, parallels 
between cancer and transplantation immunology, MHC class II antigen regulation 
and their relationship to qualitative and quantitative composition of gut microbiome, 
gut-derived hormones, diet, and medications should receive increasing attention.   

Thus, liver allograft immunology will assuredly embrace “discovery science” 
platforms, but integrate findings into structural-functional relationships. 



Figure 1. Hepatic Artery and Biliary Tree 

(A) Gross view of the “tolerogenic” hepatic parenchyma enveloping the centrally- p
laced biliary tree, which are usefully conceptualized as 2 interdependent organs. The 

common hepatic duct (blue) bifurcates to hepatic ducts (yellow), which branch to 

segmental (red; 0.4-0.8 mm) then area ducts with their branches (green; 0.3-0.4 

mm). These first generation branches are macroscopically visible “large intrahepatic 

bile ducts”. A further 7-8 branchings generate septal (>0.1 mm) and interlobular 

ducts, culminating at ductules and canals of Hering.  (B) Extra-hepatic and large 

intra-hepatic bile ducts contain rows of anastomosing peri-biliary glands that produce 

mucous and serous secretions.  (C) Cross-section of a large intra-hepatic portal tract 

showing afferent layer of the peri-biliary capillary plexus (PCP; IPEX: brown) that lies 

immediately beneath the single layer of BEC (IPEX stain for AE1/3: red), shown at 

higher magnification in the lower right inset.     (D) High power magnification of 

actual terminal portal tract: note the continued close association between capillaries 

(brown) and the BEC (red).   

Figure 2. Microvascular lobular architecture 

A 3-dimensional (3D) idealized view of a classic hepatic lobule (right panel) is 

formed by terminal portal tracts (PT) at the vertices of a roughly hexagonal 

structure, which notionally carry PV parenchymal and HA branches, BD, nerves and 

lymph channels surrounded by fibrosis tissue (left upper and middle panels (1)). 

This anatomic design contributes to histologic patterns in vascular disease and 

functional hepatocyte specialization zones (A: periportal; B: midzonal; and C: 

perivenular or centrilobular). The figure omits some elements of curvature and 

variations around large conducting portal vein branches for simplicity. 

Figure 3.  Hepatic Arterial Buffer Response 

The hepatic arterial buffer response (HABR) (58, 59).  Increased (portal 

hyperperfusion in reduced-size livers or after partial hepatectomy) or decreased 

portal venous flow (sclerosis, thrombosis), reciprocally regulates arterial 

resistance/vasospasm and flow primarily via adenosine, but other mediators are 

also likely involved (58, 60, 61).   

Figure 4.  Hepatic MPS System and hepatic sinusoid structure 

Recipient leukocytes from arterial and portal venous blood and pass from portal 

tracts into sinusoid lumens dressed with relatively static resident macrophages - 

KC. Slow flowing blood in the highly branched sinusoids is extensively sampled by 

KC for particulate matter (damaged red cells, immune complexes, opsonized 

particles), live organisms and soluble signals such as MAMPS from the gut 

microbiome.  KC 



defenses to blood-borne infection are heavily integrated with other innate systems 

including platelets and granulocytes.  

Traffic patterns of immature classical/myeloid and plasmacytoid DC and monocytes 

(see text for details). In steady state, most transmigrated monocytes develop a 

tolerogenic phagocytic phenotype and traffic along Disse’s space to portal tract 

lymphatics. Some transmigrated monocytes reverse-migrate back into sinusoids 

(becoming CD16+) as motile cells with pro-inflammatory immune activating and 

sentinel functions. Monocyte-derived cells can transport antigen to lymphatics, 

differentiate to tissue macrophages or to monocyte-derived DC. This supply system 

becomes massively upregulated after liver injury or infection to generate 

inflammatory infiltrates, including rejection and specialized inflammatory structures 

such as granulomas and intrahepatic myeloid cell aggregates for T cell population 

expansion (iMATEs). 

Figure 5.  Hepatic Tolerance Mechanisms 

Hepatic immune reactivity accommodates the rich stream of mostly innocuous portal 

venous blood with food and microbial antigens, while retaining sensitivity to genuine 

danger signals from live organisms and/or tissue damage.  Efficient circulating 

particle clearance is led by Kupffer cells; scavenging is combined with immune 

sensor functions in Kupffer, dendritic and LSEC.  Cell responses show a 

predisposition to tolerance mediated by a self-regulating network of cell intrinsic 

(epigenetic), soluble microenvironmental (TGFβ, IL-10) and cell surface states 

(relatively low MHCII and co-stimulators, negative immune regulators such as PDL- 
1), as discussed in the text. 

Abbreviations: PDL-1, programmed death ligand-1; Treg, regulatory T cell; NKT cell, 

natural killer T cell; PDC, plasmacytoid dendritic cell; LSECtin, liver and lymph node 

sinusoidal endothelial C-type lectin; CD95L, CD95 ligand; PGE2, prostaglandin E2; 

TGFβ, transforming growth factor β; L, lymphatic; TNF, tumor necrosis factor; ROS, 

reactive oxygen species. 
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Tables and Figures 

Table 1.  Expression of ABH and MHC antigens in human liver under normal circumstances versus inflammatory 

conditions (normal → inflamed liver).  

Antigen HC BEC LSEC KC SC HA/PV/CV 
Endothelium 

DC Portal Microvascular 
Endo. 

AB − + + − − +++ − ++ 
H − ++ + − − +++ − ++ 
MHC A,B +/- → + +++ ++ ++ +→++ ++ ++ ++ 
MHC DR - → + − → ++ − → ++ +→++ +→++ −→++ ++→+++ +/- (variable)→+++ 
MHC DP - → + − → + − → + +→++ −→+/- −→++ ++→+++ +/−→++ 
MHC DQ - → - −/+ → − −/+ → 

− 
+→++ −→+/- −→+/− ++→+++ -/+→++ 

Abbreviations:  BEC: biliary epithelial cells; CV: central vein; DC: dendritic cells; HA: hepatic artery; HC: hepatocytes; KC: 
Kupffer cells; LSEC: liver sinusoidal endothelial cells; PV: portal vein; SC: stellate cells; Data compiled from references 
((202-207, 210-215, 226, 527-529)). More work in needed in study class II expression in specific compartments. 
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