270 research outputs found

    Optimisation and application of ICP-MS and alpha-spectrometry for determination of isotopic ratios of depleted uranium and plutonium in samples collected in Kosovo

    Get PDF
    The determination of environmental contamination with natural and artificial actinide isotopes and evaluation of their source requires precise isotopic determination of actinides, above all uranium and plutonium. This can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation of actinides. The performance of a sector-field ICP-MS (ICP-SFMS) coupled to a low-flow micronebulizer with a membrane desolvation unit, "Aridus'', was studied with respect to precise isotopic measurements of uranium and plutonium at the ultratrace level. The UH+/U+ formation rate was about 3x10(-5) and a sensitivity for U-238 of up to 4x10(9) counts s(-1) ppm(-1) was achieved. The limit of quantification (LOQ, 10s) for U-236 and Pu-239 using the experimental arrangement described above was 0.6 pg l(-1) in aqueous solution and 0.13 pg g(-1) in soil, respectively. ICP-SFMS was used in comparison to alpha spectrometry to measure the U and Pu concentrations and isotopic compositions in two soil samples and in one penetrator collected in Kosovo. ICP-MS permitted the determination of U and Pu isotope ratios including the U-236 abundance and Pu-240/Pu-239 ratio at ultratrace levels in soil samples of up to 0.1 g. Depleted uranium (U-235/U-238= 0.00202 +/-0.00001) was determined in one penetrator and one soil sample. Pu concentrations of (5.5 +/-0.1) x 10(-13) g g(-1) and (4.4 +/-0.5) x 10(-13) g g(-1) (Pu-240/Pu-239=0.35 +/-0.10 and 0.27 +/-0.07, respectively) were found in both soil samples from Kosovo. Besides plutonium, U-236 (3.1x10(-5) g g(-1)) and Am-241 (1.7x10(-12) g g(-1)) were also detected in the penetrator sample, which indicates the previous existence of neutron-related processes and points to a possible presence of spent reactor uranium in munitions. However, the most probable plutonium contamination sources in analyzed soil samples from Kosovo are mixed fallout including spent reactor fuel due to the Chernobyl nuclear power plant accident in 1986 and plutonium due to nuclear weapon tests. Additional plutonium contamination could not be determined in the Kosovo soil sample containing depleted uranium with a detection limit of about 10(-13) g g(-1)

    Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS

    Get PDF
    A method has been developed for the direct and simultaneous multielement determination of Cu, Zn, Sn, and Pb in soil and sediment samples using femtosecond laser ablation inductively coupled plasma mass spectrometry (fs-LA-ICPMS) in combination with isotope dilution mass spectrometry (IDMS). The in-cell isotope dilution fs-LA-ICPMS method proposed in this work was based on the quasi-simultaneous ablation of the natural abundance sample and the isotopically enriched solid spike, which was performed using a high repetition rate laser and a fast scanning beam device in a combined manner. Both the sample preparation procedure and the total analysis time have been drastically reduced, in comparison with previous approaches, since a unique multielement isotopically enriched solid spike was employed to analyze different powdered samples. Numerous experimental parameters were carefully selected (e.g., carrier gas flow rate, inlet diameter of the ablation cell, sample translation speed, scanner speed, etc.) in order to ensure the complete mixing between the sample and the solid spike aerosols. The proposed in-cell fs-LA-ICP-IDMS method was tested for the analysis of two soil (CRM 142R, GBW-07405) and two sediment (PACS-2, IAEA-405) reference materials, and the analysis of Cu, Zn, Sn, and Pb yielded good agreement of usually not more than 10% deviation from the certified values and precisions of less than 15% relative standard deviation. Furthermore, the concentrations were in agreement not only with the certified values but also with those obtained by ICP-IDMS after the microwave-assisted digestion of the solid samples, demonstrating therefore that in-cell fs-LA-ICP-IDMS opens the possibility for accurate and precise determinations of trace elements in powdered samples reducing the total sample preparation time to less than 5 min. Additionally, scanning electron microscope measurements showed that the aerosol generated by in-cell fs-LA-ICP-IDMS predominantly consisted of linear agglomerates of small particles (in the order of few tens of nanometers) and a few large spherical particles with diameters below 225 nm

    Boron isotope ratio (delta B-11) measurements in water framework directive monitoring programs: comparison between double focusing sector field ICP and thermal ionization mass spectrometry

    Get PDF
    International audienceThe aim of our research was to compare delta B-11 measurements performed with thermal ionization mass spectrometry (TIMS) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS) and evaluate the feasibility of implementing stable isotope methods in European water framework directive (WFD) monitoring programs. The comparison was based on delta B-11 measurements of 192 ground-and surface water samples and 15 leachates of nitrate pollution source materials (organic and mineral fertilisers). The precision of delta B-11 measurements attainable with SF-ICP-MS, 2 sigma= +/- 2.6 parts per thousand; (n = 192), is as expected lower than the precision achieved by TIMS, 2 sigma= +/- 0.3 parts per thousand (n=183). However the ease of use, rapidity and availability of SF-ICP-MS on one hand and the observed variability in delta B-11 in ground-and surface water on the other (from -3.4 to +37 parts per thousand), demonstrates that using SF-ICP-MS as an isotopic screening method would promote the use of isotopic methodology for WFD monitoring. Based on the results of the different case studies it is shown that retrieving precise information on the identification of pollution sources from delta B-11 values requires reaching the best analytical precision and accuracy possible. Hence, the superior precision of TIMS advantages tracing of nitrate pollution sources. However for some cases, e. g. trying to decipher contributions between sources with really distinct delta B-11 signatures (e.g. manure and sewage effluent), SF-ICP-MS results lead to the same conclusions and can therefore be used as a first approachable screening method for the determination of delta B-11 in WFD monitoring programs

    Radiochronological age of a uranium metal sample from an abandoned facility

    Get PDF
    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years

    Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples

    Get PDF
    • …
    corecore