90 research outputs found

    3D path planning for flexible needle steering in neurosurgery

    Full text link
    Background: We propose a 3D path planning method to steer flexible needles along curved paths in the context of Deep Brain Stimulation (DBS) procedures. Methods: Our approach is based on a rapidly‐exploring random tree strategy and it takes into account constraints coming from anatomical obstacles and physical constraints dictated by flexible needle kinematics. The strategy is evaluated in simulation on a realistic 3D CAD model of the brain. Results: The subthalamic nucleus (STN) and the fornix can be reached along several curved paths from various entry points. As compared to the usual straight line path, these curved paths avoid tissue damage to important neural structures while allowing for a much greater selection of entry points. Conclusions: This path planning method offers alternative curved paths to reach DBS targets with flexible needles. The method potentially leads to safer paths and additional entry points capable of reaching the desired stimulation targets

    Interventional MR Elastography for MRI-Guided Percutaneous Procedures

    Get PDF
    International audiencePURPOSE : MRI-guided thermal ablations require reliable monitoring methods to ensure complete destruction of the diseased tissue while avoiding damage to the surrounding healthy tissue. Based on the fact that thermal ablations result in substantial changes in biomechanical properties, interventional MR elastography (MRE) dedicated to the monitoring of MR-guided thermal therapies is proposed here. METHODS : Interventional MRE consists of a needle MRE driver, a fast and interactive gradient echo pulse sequence with motion encoding, and an inverse problem solver in real-time. This complete protocol was tested in vivo on swine and the ability to monitor elasticity changes in real-time was assessed in phantom. RESULTS : Thanks to a short repetition time, a reduction of the number of phase-offsets and the use of a sliding window, one refreshed elastogram was provided every 2.56 s for an excitation frequency of 100 Hz. In vivo elastograms of swine liver were successfully provided in real-time during one breath-hold. Changes of elasticity were successfully monitored in a phantom during its gelation with the same elastogram frame rate. CONCLUSION : This study demonstrates the ability of detecting elasticity changes in real-time and providing elastograms in vivo with interventional MRE that could be used for the monitoring of thermal ablations

    Magnetically Guided Laser Surgery for the Treatment of Twin-to-Twin Transfusion Syndrome

    Full text link
    Twin-to-twin transfusion syndrome (TTTS) is a severe disorder that often leads to the death of monochorionic twin fetuses, if left untreated. Current prenatal interventions to treat the condition involve the use of rigid fetoscopes for targeted laser coagulation of the vascular anastomoses. These tools are limited in their area of operation, making treatment challenging, especially in cases with anterior placentation. Herein, a robotic platform to perform this task using remote magnetic navigation is proposed. In contrast to rigid tools, the presented custom magnetic fetoscope is highly flexible, dexterous, and has considerable advantages, including safety and precision. A visual servoing algorithm that allows the surgeon to navigate in the uterus with submillimeter precision is introduced. The system has been validated on ex vivo human placentas in a setting that mimics the real intraoperative conditions

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore