576 research outputs found

    Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors

    Get PDF
    The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator–like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.Harvard University. Society of FellowsNational Human Genome Research Institute (U.S.) (Center for Excellence in Genomics Science P50 HG003170)United States. Dept. of Energy (Genomes to Life DE-FG02-02ER63445)United States. Defense Advanced Research Projects Agency (W911NF-08-1-0254, G.M.C.)Wyss Institute of Biologically Inspired EngineeringNational Institutes of Health (U.S.) (Transformative R01 (R01 NS073124-01))European School of Molecular Medicine (predoctoral fellowship

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The generation of saccades is influenced by the level of "preparatory set activity" in cortical oculomotor areas. This preparatory activity can be examined using the gap-paradigm in which a temporal gap is introduced between the disappearance of a central fixation target and the appearance of an eccentric target.</p> <p>Methods</p> <p>Ten healthy subjects made horizontal pro- or antisaccades in response to lateralized cues after a gap period of 200 ms. Single-pulse transcranial magnetic stimulation (TMS) was applied to the dorsolateral prefrontal cortex (DLPFC), frontal eye field (FEF), or supplementary eye field (SEF) of the right hemisphere 100 or 200 ms after the disappearance of the fixation point. Saccade latencies were measured to probe the disruptive effect of TMS on saccade preparation. In six individuals, we gave realistic sham TMS during the gap period to mimic auditory and somatosensory stimulation without stimulating the cortex.</p> <p>Results</p> <p>TMS to DLPFC, FEF, or SEF increased the latencies of contraversive pro- and antisaccades. This TMS-induced delay of saccade initiation was particularly evident in conditions with a relatively high level of preparatory set activity: The increase in saccade latency was more pronounced at the end of the gap period and when participants prepared for prosaccades rather than antisaccades. Although the "lesion effect" of TMS was stronger with prefrontal TMS, TMS to FEF or SEF also interfered with the initiation of saccades. The delay in saccade onset induced by real TMS was not caused by non-specific effects because sham stimulation shortened the latencies of contra- and ipsiversive anti-saccades, presumably due to intersensory facilitation.</p> <p>Conclusion</p> <p>Our results are compatible with the view that the "preparatory set" for contraversive saccades is represented in a distributed cortical network, including the contralateral DLPFC, FEF and SEF.</p

    Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    Get PDF
    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently

    DNA Nicks Promote Efficient and Safe Targeted Gene Correction

    Get PDF
    Targeted gene correction employs a site-specific DNA lesion to promote homologous recombination that eliminates mutation in a disease gene of interest. The double-strand break typically used to initiate correction can also result in genomic instability if deleterious repair occurs rather than gene correction, possibly compromising the safety of targeted gene correction. Here we show that single-strand breaks (nicks) and double-strand breaks both promote efficient gene correction. However, breaks promote high levels of inadvertent but heritable genomic alterations both locally and elsewhere in the genome, while nicks are accompanied by essentially no collateral local mutagenesis, and thus provide a safer approach to gene correction. Defining efficacy as the ratio of gene correction to local deletion, nicks initiate gene correction with 70-fold greater efficacy than do double-strand breaks (29.0±6.0% and 0.42±0.03%, respectively). Thus nicks initiate efficient gene correction, with limited local mutagenesis. These results have clear therapeutic implications, and should inform future design of meganucleases for targeted gene correction

    Applications of CRISPR–Cas systems in neuroscience

    Get PDF
    Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03
    corecore