54 research outputs found

    コメ交渉―ノー、ノー、1000回もノー

    Get PDF

    Wind-driven oscillations in meridional overturning circulations near the equator. Part II: idealized simulations

    Get PDF
    Large-amplitude [±100 Sv (1 Sv ≡ 106 m3 s−1)], high-frequency oscillations in the Pacific Ocean’s meridional overturning circulation within 10° of the equator have been found in integrations of the NEMO ocean general circulation model. Part I of this paper showed that these oscillations are dominated by two bands of frequencies with periods close to 4 and 10 days and that they are driven by the winds within about 10° of the equator. This part shows that the oscillations can be well simulated by small-amplitude, wind-driven motions on a horizontally uniform, stably stratified state of rest. Its main novelty is that, by focusing on the zonally integrated linearized equations, it presents solutions for the motions in a basin with sloping side boundaries. The solutions are found using vertical normal modes and equatorial meridional modes representing Yanai and inertia–gravity waves. Simulations of 16-day-long segments of the time series for the Pacific of each of the first three meridional and vertical modes (nine modes in all) capture between 85% and 95% of the variance of matching time series segments diagnosed from the NEMO integrations. The best agreement is obtained by driving the solutions with the full wind forcing and the full pressure forces on the bathymetry. Similar results are obtained for the corresponding modes in the Atlantic and Indian Oceans. Slower variations in the same meridional and vertical modes of the MOC are also shown to be well simulated by a quasi-stationary solution driven by zonal wind and pressure forces

    Design and fabrication of recombinant reflectin-based multilayer reflectors: bio-design engineering and photoisomerism induced wavelength modulation

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-10-03, accepted 2021-06-18, registration 2021-07-07, pub-electronic 2021-07-16, online 2021-07-16, collection 2021-12Publication status: PublishedFunder: Defence Science and Technology Laboratory; doi: http://dx.doi.org/10.13039/100010418Funder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/S01778X/1, EP/S01778X/1, EP/S01778X/1Abstract: The remarkable camouflage capabilities of cephalopods have inspired many to develop dynamic optical materials which exploit certain design principles and/or material properties from cephalopod dermal cells. Here, the angle-dependent optical properties of various single-layer reflectin thin-films on Si wafers are characterized within the UV–Vis–NIR regions. Following this, initial efforts to design, fabricate, and optically characterize a bio-inspired reflectin-based multilayer reflector is described, which was found to conserve the optical properties of single layer films but exhibit reduced angle-dependent visible reflectivity. Finally, we report the integration of phytochrome visible light-induced isomerism into reflectin-based films, which was found to subtly modulate reflectin thin-film reflectivity

    The fallacy of placing confidence in confidence intervals

    Get PDF
    Interval estimates – estimates of parameters that include an allowance for sampling uncertainty – have long been touted as a key component of statistical analyses. There are several kinds of interval estimates, but the most popular are confidence intervals (CIs): intervals that contain the true parameter value in some known proportion of repeated samples, on average. The width of confidence intervals is thought to index the precision of an estimate; CIs are thought to be a guide to which parameter values are plausible or reasonable; and the confidence coefficient of the interval (e.g., 95 %) is thought to index the plausibility that the true parameter is included in the interval. We show in a number of examples that CIs do not necessarily have any of these properties, and can lead to unjustified or arbitrary inferences. For this reason, we caution against relying upon confidence interval theory to justify interval estimates, and suggest that other theories of interval estimation should be used instead

    Advanced therapeutic dressings for effective wound healing

    Get PDF
    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing due to the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer reviewed literature and other publicly available sources such as the FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, surgical and traumatic wounds (e.g. accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue engineered substitutes, biomaterials based biological dressings, biological and naturally derived dressings, medicated sutures and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care
    corecore