161 research outputs found
Integrating the promotion of physical activity within a smoking cessation programme: Findings from collaborative action research in UK Stop Smoking Services
Background: Within the framework of collaborative action research, the aim was to explore the feasibility of
developing and embedding physical activity promotion as a smoking cessation aid within UK 6/7-week National
Health Service (NHS) Stop Smoking Services.
Methods: In Phase 1 three initial cycles of collaborative action research (observation, reflection, planning,
implementation and re-evaluation), in an urban Stop Smoking Service, led to the development of an integrated
intervention in which physical activity was promoted as a cessation aid, with the support of a theoretically based
self-help guide, and self monitoring using pedometers. In Phase 2 advisors underwent training and offered the
intervention, and changes in physical activity promoting behaviour and beliefs were monitored. Also, changes in
clients’ stage of readiness to use physical activity as a cessation aid, physical activity beliefs and behaviour and
physical activity levels were assessed, among those who attended the clinic at 4-week post-quit. Qualitative data
were collected, in the form of clinic observation, informal interviews with advisors and field notes.
Results: The integrated intervention emerged through cycles of collaboration as something quite different to
previous practice. Based on field notes, there were many positive elements associated with the integrated
intervention in Phase 2. Self-reported advisors’ physical activity promoting behaviour increased as a result of
training and adapting to the intervention. There was a significant advancement in clients’ stage of readiness to use physical activity as a smoking cessation aid.
Conclusions: Collaboration with advisors was key in ensuring that a feasible intervention was developed as an aid to smoking cessation. There is scope to further develop tailored support to increasing physical activity and
smoking cessation, mediated through changes in perceptions about the benefits of, and confidence to do physical activity
Physical activity as an aid to smoking cessation during pregnancy (LEAP) trial: study protocol for a randomized controlled trial
Background: Many women try to stop smoking in pregnancy but fail. One difficulty is that there is insufficient evidence that medications for smoking cessation are effective and safe in pregnancy and thus many women prefer to avoid these. Physical activity (PA) interventions may assist cessation; however, trials examining these interventions have been too small to detect or exclude plausible beneficial effects. The London Exercise And Pregnant smokers (LEAP) trial is investigating whether a PA intervention is effective and cost-effective when used for smoking cessation by pregnant women, and will be the largest study of its kind to date.
Methods/design: The LEAP study is a pragmatic, multi-center, two-arm, randomized, controlled trial that will target pregnant women who smoke at least one cigarette a day (and at least five cigarettes a day before pregnancy), and are between 10 and 24 weeks pregnant. Eligible patients are individually randomized to either usual care (that is, behavioral support for smoking cessation) or usual care plus a intervention (entailing supervised exercise on a treadmill plus PA consultations). The primary outcome of the trial is self-reported and biochemically validated continuous abstinence from smoking between a specified quit date and the end of pregnancy. The secondary outcomes, measured at 1 and 4 weeks after the quit date, and at the end of pregnancy and 6 months after childbirth, are PA levels, depression, self-confidence, and cigarette withdrawal symptoms. Smoking status will also be self-reported at 6 months after childbirth. In addition, perinatal measures will be collected, including antenatal complications, duration of labor, mode of delivery, and birth and placental weight. Outcomes will be analyzed on an intention-to-treat basis, and logistic regression models used to compare treatment effects on the primary outcome.
Discussion: This trial will assess whether a PA intervention is effective when used for smoking cessation during pregnancy
LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM
We study the phenomenology of a supersymmetric left-right model, assuming
minimal supergravity boundary conditions. Both left-right and (B-L) symmetries
are broken at an energy scale close to, but significantly below the GUT scale.
Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for
superpotential and soft parameters complete at 2-loop order. At low energies
lepton flavour violation (LFV) and small, but potentially measurable mass
splittings in the charged scalar lepton sector appear, due to the RGE running.
Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton
mass splittings, occur not only in the left- but also in the right slepton
sector. Especially, ratios of LFV slepton decays, such as Br()/Br() are sensitive to the
ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts
a polarization asymmetry of the outgoing positrons in the decay , A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$.
Observation of any of these signals allows to distinguish this model from any
of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling
The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data
collected by the LIGO and Virgo detectors between July 7, 2009 and October 20,
2010: data are analyzed when at least two of the three LIGO-Virgo detectors are
in coincident operation, with a total observation time of 207 days. The
analysis searches for transients of duration < 1 s over the frequency band
64-5000 Hz, without other assumptions on the signal waveform, polarization,
direction or occurrence time. All identified events are consistent with the
expected accidental background. We set frequentist upper limits on the rate of
gravitational-wave bursts by combining this search with the previous LIGO-Virgo
search on the data collected between November 2005 and October 2007. The upper
limit on the rate of strong gravitational-wave bursts at the Earth is 1.3
events per year at 90% confidence. We also present upper limits on source rate
density per year and Mpc^3 for sample populations of standard-candle sources.
As in the previous joint run, typical sensitivities of the search in terms of
the root-sum-squared strain amplitude for these waveforms lie in the range 5
10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs
entails the most sensitive all-sky search for generic gravitational-wave bursts
and synthesizes the results achieved by the initial generation of
interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see
also the public announcement at
http://www.ligo.org/science/Publication-S6BurstAllSky
First all-sky search for continuous gravitational waves from unknown sources in binary systems
We present the first results of an all-sky search for continuous
gravitational waves from unknown spinning neutron stars in binary systems using
LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect
algorithm, the search was carried out on data from the sixth LIGO Science Run
and the second and third Virgo Science Runs. The search covers a range of
frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h
and a frequency- and period-dependent range of frequency modulation depths from
0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of
the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is
circular. While no plausible candidate gravitational wave events survive the
pipeline, upper limits are set on the analyzed data. The most sensitive 95%
confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217
Hz, assuming the source waves are circularly polarized. Although this search
has been optimized for circular binary orbits, the upper limits obtained remain
valid for orbital eccentricities as large as 0.9. In addition, upper limits are
placed on continuous gravitational wave emission from the low-mass x-ray binary
Scorpius X-1 between 20 Hz and 57.25 Hz.Comment: 16 pages, 6 figure
Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors
Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz–1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between
detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of Oð10Þfor GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while
the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GWemission energy of 10−2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with
Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.122004publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Fil: Domínguez, E. Argentinian Gravitational Wave Group; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Reula, O. Argentinian Gravitational Wave Group; Argentina.Fil: Ortega, W. Argentinian Gravitational Wave Group; Argentina.Fil: Wolovick, N. Argentinian Gravitational Wave Group; Argentina.Fil: Schilman, M. Argentinian Gravitational Wave Group; Argentina.Física de Partículas y Campo
- …