697 research outputs found

    Resonance scattering and singularities of the scattering function

    Full text link
    Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel.Comment: 4 pages, 3 figure

    Collectivity, Phase Transitions and Exceptional Points in Open Quantum Systems

    Full text link
    Phase transitions in open quantum systems, which are associated with the formation of collective states of a large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian. Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as functions of a coupling parameter. In the present paper this parameter is the coupling strength to the continuum. It is shown that the positions of the exceptional points (their accumulation point in the thermodynamical limit) depend on the particular type and energy dependence of the coupling to the continuum in the same way as the transition point of the corresponding phase transition.Comment: 22 pages, 4 figure

    Rethinking the Normal Vote, the Personal Vote, and the Impact of Legislative Professionalism in U.S. State Legislative Elections

    Get PDF
    Legislators might rely on their partisan base for electoral support—what scholars call their normal vote—or they may cultivate support among nonpartisans through casework or constituency service—what scholars call a personal vote. Previous research frequently argues that legislators face a tradeoff between pursuing the normal vote and a personal vote as traditionally defined, often focusing on resources used by incumbents to build their personal vote. In contrast, we argue that securing the support of partisans and nonpartisans alike should be evaluated based on how a legislator performs in office, and that the so-called normal and personal vote need not be viewed as in conflict. We evaluate our claims using data from state legislative elections following redistricting, focusing on legislative professionalism to measure the resources available to incumbents that they might use to cultivate a personal note

    Dynamics and Berry phase of two-species Bose-Einstein condensates

    Get PDF
    In terms of exact solutions of the time-dependent Schrodinger equation for an effective giant spin modeled from a coupled two-mode Bose-Einstein condensate (BEC) with adiabatic and cyclic time-varying Raman coupling between two hyperfine states of the BEC, we obtain analytic time-evolution formulas of the population imbalance and relative phase between two components with various initial states, especially the SU(2)coherent state. We find the Berry phase depending on the number parity of atoms, and particle number dependence of the collapse revival of population-imbalance oscillation. It is shown that self-trapping and phase locking can be achieved from initial SU(2) coherent states with proper parameters.Comment: 18 pages,5 figure

    Chaos and the Quantum Phase Transition in the Dicke Model

    Full text link
    We investigate the quantum chaotic properties of the Dicke Hamiltonian; a quantum-optical model which describes a single-mode bosonic field interacting with an ensemble of NN two-level atoms. This model exhibits a zero-temperature quantum phase transition in the N \go \infty limit, which we describe exactly in an effective Hamiltonian approach. We then numerically investigate the system at finite NN and, by analysing the level statistics, we demonstrate that the system undergoes a transition from quasi-integrability to quantum chaotic, and that this transition is caused by the precursors of the quantum phase-transition. Our considerations of the wavefunction indicate that this is connected with a delocalisation of the system and the emergence of macroscopic coherence. We also derive a semi-classical Dicke model, which exhibits analogues of all the important features of the quantum model, such as the phase transition and the concurrent onset of chaos.Comment: 51 pages, 15 figures, late

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore