We investigate the quantum chaotic properties of the Dicke Hamiltonian; a
quantum-optical model which describes a single-mode bosonic field interacting
with an ensemble of N two-level atoms. This model exhibits a zero-temperature
quantum phase transition in the N \go \infty limit, which we describe exactly
in an effective Hamiltonian approach. We then numerically investigate the
system at finite N and, by analysing the level statistics, we demonstrate
that the system undergoes a transition from quasi-integrability to quantum
chaotic, and that this transition is caused by the precursors of the quantum
phase-transition. Our considerations of the wavefunction indicate that this is
connected with a delocalisation of the system and the emergence of macroscopic
coherence. We also derive a semi-classical Dicke model, which exhibits
analogues of all the important features of the quantum model, such as the phase
transition and the concurrent onset of chaos.Comment: 51 pages, 15 figures, late