1,202 research outputs found

    The SOLAIRE Project: A Gaze-Contingent System to Facilitate Reading for Patients with Scotomatas

    Get PDF
    Reading is a major issue for visually impaired patients suffering from a blind area in the fovea. Current systems to facilitate reading do not really benet from recent advances in computer science, such as computer vision and augmented reality. On the SOLAIRE project (Système d'Optimisation de la Lecture par Asservissement de l'Image au Regard), we develop an augmented reality system to help patients to read more easily, resulting from a strong interaction between ophthalmologists and researchers in visual neuroscience and computer science. The main idea in this project is to control the display of the text read with the gaze, taking into account the specic characteristics of the scotoma for every individual. This report describes the system

    Marker assisted selection of malic-consuming saccharomyces cerevisiae strains for winemaking. Efficiency and limits of a qtl’s driven breeding program

    Get PDF
    Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. Breeding programs that take advantage of this characteristic are widely used for selecting starters for wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a marker assisted selection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many « malic consumer » loci. Then, eleven quantitative trait loci (QTLs) already identified were used for implementing the MAS breeding program. By this method, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni. This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.Centre français de phénomique végétalePlateforme d'Innovation " Forêt-Bois-Fibre-Biomasse du Futur

    Combination of 3D Scanning, Modeling and Analyzing Methods around the Castle of Coatfrec Reconstitution

    Get PDF
    International audienceThe castle of Coatfrec is a medieval castle in Brittany constituting merely a few remaining ruins currently in the process of restoration. Beyond its great archeological interest, it has become, over the course of the last few years, the subject of experimentation in digital archeology. Methods of 3D scanning were implored in order to gauge comparisons between the remaining structures and their absent hypothetical ones, resulting in the first quantitative results of its kind. This paper seeks to introduce the methods which carried out said research, as well as to present the subsequent results obtained using these new digital tools

    DNA repair during nonreductional meiosis in the asexual rotifer Adineta vaga

    Get PDF
    Rotifers of the class Bdelloidea are microscopic animals notorious for their long-term persistence in the apparent absence of sexual reproduction and meiotic recombination. This evolutionary paradox is often counterbalanced by invoking their ability to repair environmentally induced genome breakage. By studying the dynamics of DNA damage response in the bdelloid species , we found that it occurs rapidly in the soma, producing a partially reassembled genome. By contrast, germline DNA repair is delayed to a specific time window of oogenesis during which homologous chromosomes adopt a meiotic-like juxtaposed configuration, resulting in accurate reconstitution of the genome in the offspring. Our finding that a noncanonical meiosis is the mechanism of germline DNA repair in bdelloid rotifers gives previously unidentified insights on their enigmatic long-term evolution

    Invasiveness of an introduced species: the role of hybridization and ecological constraints

    Get PDF
    International audienceIntroduced species are confronted with new environments to which they need to adapt. However, the ecological success of an introduced species is generally difficult to predict, especially when hybridizations may be involved in the invasion success. In western Europe, the lake frog Pelophylax ridibundus appears to be particularly successful. A reason for this species' success might be the presence of the invader's genetic material prior to the introduction in the form of a hybrid between P. ridibundus and a second indigenous water frog species. These hybrids reproduce by hybridogenesis, only transmitting the ridibundus genome to gametes and backcrossing with the indigenous species (i.e. P. lessonae). This reproductive system allows the hybrid to be independent from P. ridibundus, and allows the ridibundus genome to be more widely spread than the species itself. Matings among hybrids produce newly formed P. ridibundus offspring (N), if the genomes are compatible. Therefore, we hypothesize that hybridogenesis increases the invasiveness of P. ridibundus (1) by enhancing propagule pressure through N individuals, and/or (2) by increasing adaptation of invaders to the native water frogs' habitat through hybrid-derived ridibundus genomes that are locally adapted. We find support for the first hypothesis because a notable fraction of N tadpoles is viable. However, in our semi-natural experiments they did not outperform ridibundus tadpoles in the native water frogs' habitat, nor did they differ physiologically. This does not support the second hypothesis and highlights ecological constraints on the invasion. However, we cannot rule out that these constraints may fall with ongoing selection, making a replacement of indigenous species highly probable in the future

    Use of axial tomography to follow temporal changes of benthic communities in an unstable sedimentary environment (Baie des Ha! Ha!, Saguenay Fjord)

    Get PDF
    In the upper layer of the sediment column, organic matter recycling is greatly influenced by bioturbation. However, there are many physical changes in the nature of the sediment that may disturb benthic communities and create a biogeochemical imbalance. Following a very heavy rainfall between 26 and 29 July 1996, an intense flash flood in the Saguenay Fjord caused discharges of 6 million cubic metres of sediments into Baie des Ha! Ha!. Unstable sediment deposits located at the top of the delta of the Rivie`re des Ha! Ha! were sporadically exported to the deep basin. After this physical disturbance, meiobenthic and macrobenthic organisms progressively re-colonised the sediment column. To determine the impacts of such sedimentary depositions on benthic fauna, two stations, one at the head and one at the mouth of the Baie des Ha! Ha!, have been monitored since 1996. During this survey, we developed a new method for the quantification of biogenic structures using computer axial tomography (CAT-Scan). Benthic fauna analysis showed that the two stations were characterised by different temporal changes in the benthic dynamics according to their geographic location. Using CAT-Scan analysis of sediment cores, we were able to characterise the stability of the sediment column for the two stations in 1999 and 2000. Scan results suggest that colonisation processes were closely linked with the stability of the sediment column. Erosion and redeposition of surficial sediments caused a succession in the formation of biogenic structures. These variations were characterised for the first time using CAT-Scan, which is a nondestructive, rapid, and precise method. Tomographic analysis showed the importance of the production and destruction rates of biogenic structures and the sedimentation rate for the preservation of burrows and potentially reactive components. This study finally demonstrated that each erosional event could be followed by a rapid formation of biogenic structures, allowing the re-oxidation of old deposits

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
    corecore