55 research outputs found

    The conundrum of using hyperoxia in COVID-19 treatment strategies: may intermittent therapeutic hyperoxia play a helpful role in the expression of the surface receptors ACE2 and Furin in lung tissue via triggering of HIF-1α?

    Get PDF
    In the current pandemic of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the therapeutic administration of oxygen is a common procedure in order to mitigate patient’s hypoxia in the course of severe corona virus disease 2019 (COVID-19) pneumonia. However, additional oxygen causes a variety of well-known side-effects, impacting a number of systems regulating cardiovascular and respiratory homeostasis as well as reactive oxygen species (ROS)-production via oxidative stress. In this article, we want to focus on intermittent changes in lung and tissue oxygenation, as changes in local pO2 may be able to trigger one of the key effectors of cellular oxygen-sensing, hypoxia-inducible factor-1α (HIF-1α) and, in downstream, the expression of angiotensin-converting enzyme-2 (ACE2) and Furin

    Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 micron

    Get PDF
    For the first time a detailed study of hybrid mode-locking in two- section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material. ©2009 Optical Society of America

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Analysis of Single- and Double-Stranded DNA Damage in Osteoblastic Cells after Hyperbaric Oxygen Exposure

    No full text
    (1) Background: Hyperbaric oxygen (HBO) exposure induces oxidative stress that may lead to DNA damage, which has been observed in human peripheral blood lymphocytes or non-human cells. Here, we investigated the impact of hyperbaric conditions on two human osteoblastic cell lines: primary human osteoblasts, HOBs, and the osteogenic tumor cell line SAOS-2. (2) Methods: Cells were exposed to HBO in an experimental hyperbaric chamber (4 ATA, 100% oxygen, 37 °C, and 4 h) or sham-exposed (1 ATA, air, 37 °C, and 4 h). DNA damage was examined before, directly after, and 24 h after exposure with an alkaline comet assay and detection of γH2AX+53BP1 colocalizing double-strand break (DSB) foci and apoptosis. The gene expression of TGFß-1, HO-1, and NQO1, involved in antioxidative functions, was measured with qRT-PCR. (3) Results: The alkaline comet assay showed significantly elevated levels of DNA damage in both cell lines after 4 h of HBO, while the DSB foci were similar to sham. γH2AX analysis indicated a slight increase in apoptosis in both cell lines. The increased expression of HO-1 in HOB and SAOS-2 directly after exposure suggested the induction of an antioxidative response in these cells. Additionally, the expression of TGF-ß1 was negatively affected in HOB cells 4 h after exposure. (4) Conclusions: in summary, this study indicates that osteoblastic cells are sensitive to the DNA-damaging effects of hyperbaric hyperoxia, with the HBO-induced DNA damage consisting largely of single-strand DNA breaks that are rapidly repaired
    corecore