180 research outputs found

    The Search for Anisotropy in the Arrival Directions of Ultra-High Energy Cosmic Rays Observed by the High Resolution Fly's Eye Detector in Monocular Mode

    Full text link
    The High Resolution Fly's Eye HiRes-I detector has now been in operation in monocular mode for over six years. During that time span, HiRes-I has accumulated a larger exposure to Ultra-High Energy Cosmic Rays (UHECRs) above 10^19 eV than any other experiment built to date. This presents an unprecedented opportunity to search for anisotropy in the arrival directions of UHECRs. We present results of a search for dipole distributions oriented towards major astrophysical landmarks and a search for small-scale clustering. We conclude that the HiRes-I data set is, in fact, consistent with an isotropic source model.Comment: 6 pages, 5 figures; to appear in the proceedings of CRIS 2004, Catania, Italy, 31 May - 4 June 2004 (Nuclear Phys. B

    Electromigration-Induced Propagation of Nonlinear Surface Waves

    Full text link
    Due to the effects of surface electromigration, waves can propagate over the free surface of a current-carrying metallic or semiconducting film of thickness h_0. In this paper, waves of finite amplitude, and slow modulations of these waves, are studied. Periodic wave trains of finite amplitude are found, as well as their dispersion relation. If the film material is isotropic, a wave train with wavelength lambda is unstable if lambda/h_0 < 3.9027..., and is otherwise marginally stable. The equation of motion for slow modulations of a finite amplitude, periodic wave train is shown to be the nonlinear Schrodinger equation. As a result, envelope solitons can travel over the film's surface.Comment: 13 pages, 2 figures. To appear in Phys. Rev.

    Spinal decompensation in degenerative lumbar scoliosis

    Get PDF
    Due to the aging population, degenerative scoliosis is a growing clinical problem. It is associated with back pain and radicular symptoms. The pathogenesis of degenerative scoliosis lies in degenerative changes of the spinal structures, such as the intervertebral disc, the facet joints and the vertebrae itself. Possibly muscle weakness also plays a role. However, it is not clear what exactly causes the decompensation to occur and what determines the direction of the curve. It is known that in the normal spine a pre-existing rotation exists at the thoracic level, but not at the lumbar level. In this retrospective study we have investigated if a predominant curve pattern can be found in degenerative scoliosis and whether symptoms are predominantly present at one side relative to the curve direction. The lumbar curves of 88 patients with degenerative scoliosis were analyzed and symptoms were recorded. It was found that curve direction depended significantly on the apical level of the curve. The majority of curves with an apex above L2 were convex to the right, whereas curves with an apex below L2 were more frequently convex to the left. This would indicate that also in degenerative scoliosis the innate curvature and rotational pattern of the spine plays a role in the direction of the curve. Unilateral symptoms were not coupled to the curve direction. It is believed that the symptoms are related to local and more specific degenerative changes besides the scoliotic curve itself

    OpenSAFELY: a platform for analysing electronic health records designed for reproducible research

    Get PDF
    Electronic health records (EHRs) and other administrative health data are increasingly used in research to generate evidence on the effectiveness, safety, and utilisation of medical products and services, and to inform public health guidance and policy. Reproducibility is a fundamental step for research credibility and promotes trust in evidence generated from EHRs. At present, ensuring research using EHRs is reproducible can be challenging for researchers. Research software platforms can provide technical solutions to enhance the reproducibility of research conducted using EHRs. In response to the COVID-19 pandemic, we developed the secure, transparent, analytic open-source software platform OpenSAFELY designed with reproducible research in mind. OpenSAFELY mitigates common barriers to reproducible research by: standardising key workflows around data preparation; removing barriers to code-sharing in secure analysis environments; enforcing public sharing of programming code and codelists; ensuring the same computational environment is used everywhere; integrating new and existing tools that encourage and enable the use of reproducible working practices; and providing an audit trail for all code that is run against the real data to increase transparency. This paper describes OpenSAFELY’s reproducibility-by-design approach in detail

    Spatio-Temporal Progression of Grey and White Matter Damage Following Contusion Injury in Rat Spinal Cord

    Get PDF
    Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait™ analysis). We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min) lesion volumes showed very low variance (1.92±0.23 mm3, mean±SD, n = 5). Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed

    Epidemiology of injuries from fire, heat and hot substances : global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study

    Get PDF
    Background Past research has shown how fires, heat and hot substances are important causes of health loss globally. Detailed estimates of the morbidity and mortality from these injuries could help drive preventative measures and improved access to care. Methods We used the Global Burden of Disease 2017 framework to produce three main results. First, we produced results on incidence, prevalence, years lived with disability, deaths, years of life lost and disability-adjusted life years from 1990 to 2017 for 195 countries and territories. Second, we analysed these results to measure mortality-to-incidence ratios by location. Third, we reported the measures above in terms of the cause of fire, heat and hot substances and the types of bodily injuries that result. Results Globally, there were 8 991 468 (7 481 218 to 10 740 897) new fire, heat and hot substance injuries in 2017 with 120 632 (101 630 to 129 383) deaths. At the global level, the age-standardised mortality caused by fire, heat and hot substances significantly declined from 1990 to 2017, but regionally there was variability in age-standardised incidence with some regions experiencing an increase (eg, Southern Latin America) and others experiencing a significant decrease (eg, High-income North America). Conclusions The incidence and mortality of injuries that result from fire, heat and hot substances affect every region of the world but are most concentrated in middle and lower income areas. More resources should be invested in measuring these injuries as well as in improving infrastructure, advancing safety measures and ensuring access to care.Peer reviewe

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν)\sigma(E_\nu) for charged-current νe\nu_e absorption on argon. In the context of a simulated extraction of supernova νe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(Eν)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν)\sigma(E_\nu) must be substantially reduced before the νe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(Eν)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν)\sigma(E_\nu). A direct measurement of low-energy νe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from νe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Burden of injury along the development spectrum : associations between the Socio-demographic Index and disability-adjusted life year estimates from the Global Burden of Disease Study 2017

    Get PDF
    Background The epidemiological transition of non-communicable diseases replacing infectious diseases as the main contributors to disease burden has been well documented in global health literature. Less focus, however, has been given to the relationship between sociodemographic changes and injury. The aim of this study was to examine the association between disability-adjusted life years (DALYs) from injury for 195 countries and territories at different levels along the development spectrum between 1990 and 2017 based on the Global Burden of Disease (GBD) 2017 estimates. Methods Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate. Results For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced. Conclusions The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.Peer reviewe

    Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.

    Get PDF
    Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments
    corecore