137 research outputs found

    Inverted orbital polarization in strained correlated oxide films

    Full text link
    Manipulating the orbital occupation of valence electrons via epitaxial strain in an effort to induce new functional properties requires considerations of how changes in the local bonding environment affect the band structure at the Fermi level. Using synchrotron radiation to measure the x-ray linear dichroism of epitaxially strained films of the correlated oxide CaFeO3, we demonstrate that the orbital polarization of the Fe valence electrons is opposite from conventional understanding. Although the energetic ordering of the Fe 3d orbitals is confirmed by multiplet ligand field theory analysis to be consistent with previously reported strain-induced behavior, we find that the nominally higher energy orbital is more populated than the lower. We ascribe this inverted orbital polarization to an anisotropic bandwidth response to strain in a compound with nearly filled bands. These findings provide an important counterexample to the traditional understanding of strain-induced orbital polarization and reveal a new method to engineer otherwise unachievable orbital occupations in correlated oxides

    T Cell Activation Markers and African Mitochondrial DNA Haplogroups among Non-Hispanic Black Participants in AIDS Clinical Trials Group Study 384

    Get PDF
    Introduction: Mitochondrial function influences T cell dynamics and is affected by mitochondrial DNA (mtDNA) variation. We previously reported an association between African mtDNA haplogroup L2 and less robust CD4 cell recovery on antiretroviral therapy (ART) in non-Hispanic black ACTG 384 subjects. We explored whether additional T cell parameters in this cohort differed by mtDNA haplogroup. Methods: ACTG 384 randomized ART-naïve subjects to two different nucleoside regimens with efavirenz, nelfinavir, or both. CD4 and CD8 memory and activation markers were available at baseline and week 48 on most subjects. mtDNA sequencing was performed on whole blood DNA, and haplogroups were determined. We studied non-Hispanic black subjects with HIV RNA <400 copies/mL at week 48. Analyses included Wilcoxon ranksum test and linear regression. Results: Data from 104 subjects were included. Major African mtDNA haplogroups included L1 (N = 25), L2 (N = 31), and L3 (N = 32). Baseline age, HIV RNA, and CD4 cells did not differ between L2 and non-L2 haplogroups. Compared to non-L2 haplogroups, L2 subjects had lower baseline activated CD4 cells (median 12% vs. 17%; p = 0.03) and tended toward lower activated CD8 cells (41% vs. 47%; p = 0.06). At 48 weeks of ART, L2 subjects had smaller decreases in activated CD4 cells (−4% vs. −11%; p = 0.01), and smaller CD4 cell increases (+95 vs. +178; p = 0.002). In models adjusting for baseline age, CD4 cells, HIV RNA, and naïve-to-memory CD4 cell ratio, haplogroup L2 was associated with lower baseline (p = 0.04) and 48-week change in (p = 0.01) activated CD4 cells. Conclusions: Among ART-naïve non-Hispanic blacks, mtDNA haplogroup L2 was associated with baseline and 48-week change in T cell activation, and poorer CD4 cell recovery. These data suggest mtDNA variation may influence CD4 T cell dynamics by modulating T cell activation. Further study is needed to replicate these associations and identify mechanisms

    Understanding the uncertainty in global forest carbon turnover

    Get PDF
    The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world\u27s forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth

    Development, test and comparison of two Multiple Criteria Decision Analysis(MCDA) models: A case of healthcare infrastructure location

    Get PDF
    When planning a new development, location decisions have always been a major issue. This paper examines and compares two modelling methods used to inform a healthcare infrastructure location decision. Two Multiple Criteria Decision Analysis (MCDA) models were developed to support the optimisation of this decision-making process, within a National Health Service (NHS) organisation, in the UK. The proposed model structure is based on seven criteria (environment and safety, size, total cost, accessibility, design, risks and population profile) and 28 sub-criteria. First, Evidential Reasoning (ER) was used to solve the model, then, the processes and results were compared with the Analytical Hierarchy Process (AHP). It was established that using ER or AHP led to the same solutions. However, the scores between the alternatives were significantly different; which impacted the stakeholders‟ decision-making. As the processes differ according to the model selected, ER or AHP, it is relevant to establish the practical and managerial implications for selecting one model or the other and providing evidence of which models best fit this specific environment. To achieve an optimum operational decision it is argued, in this study, that the most transparent and robust framework is achieved by merging ER process with the pair-wise comparison, an element of AHP. This paper makes a defined contribution by developing and examining the use of MCDA models, to rationalise new healthcare infrastructure location, with the proposed model to be used for future decision. Moreover, very few studies comparing different MCDA techniques were found, this study results enable practitioners to consider even further the modelling characteristics to ensure the development of a reliable framework, even if this means applying a hybrid approach

    Electronic structure of negative charge transfer CaFeO3 across the metal-insulator transition

    Full text link
    We investigated the metal-insulator transition for epitaxial thin films of the perovskite CaFeO3, a material with a significant oxygen ligand hole contribution to its electronic structure. We find that biaxial tensile and compressive strain suppress the metal-insulator transition temperature. By combining hard X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, and density functional calculations, we resolve the element-specific changes to the electronic structure across the metal-insulator transition. We demonstrate that the Fe electron valence undergoes no observable change between the metallic and insulating states, whereas the O electronic configuration undergoes significant changes. This strongly supports the bond-disproportionation model of the metal-insulator transition for CaFeO3 and highlights the importance of ligand holes in its electronic structure. By sensitively measuring the ligand hole density, however, we find that it increases by ~5-10% in the insulating state, which we ascribe to a further localization of electron charge on the Fe sites. These results provide detailed insight into the metal-insulator transition of negative charge transfer compounds and should prove instructive for understanding metal-insulator transitions in other late transition metal compounds such as the nickelates.Comment: Minor typographic changes mad

    Challenges and perspectives in continuous glucose monitoring

    Get PDF
    Diabetes is a global epidemic that threatens the health and well-being of hundreds of millions of people. The first step in patient treatment is to monitor glucose levels. Currently this is most commonly done using enzymatic strips. This approach suffers from several limitations, namely it requires a blood sample and is therefore invasive, the quality and the stability of the enzymatic strips vary widely, and the patient is burdened by performing the measurement themselves. This results in dangerous fluctuations in glucose levels often going undetected. There is currently intense research towards new approaches in glucose detection that would enable non-invasive continuous glucose monitoring (CGM). In this review, we explore the state-of-the-art in glucose detection technologies. In particular, we focus on the physical mechanisms behind different approaches, and how these influence and determine the accuracy and reliability of glucose detection. We begin by reviewing the basic physical and chemical properties of the glucose molecule. Although these play a central role in detection, especially the anomeric ratio, they are surprisingly often overlooked in the literature. We then review state-of-the art and emerging detection methods. Finally, we survey the current market for glucometers. Recent results show that past challenges in glucose detection are now being overcome, thereby enabling the development of smart wearable devices for non-invasive continuous glucose monitoring. These new directions in glucose detection have enormous potential to improve the quality of life of millions of diabetics, as well as offer insight into the development, treatment and even prevention of the disease

    Synaptic Wnt signaling—a contributor to major psychiatric disorders?

    Get PDF
    Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
    corecore