15 research outputs found

    Factors that affect serum levels of ferritin in Australian adults and implications for Follow-up

    Get PDF
    Background & Aims Serum levels of ferritin are commonly measured to assess iron stores but are affected by factors such as obesity and chronic disease. Published reference ranges have not changed in decades, and the number of patients whose levels exceed the upper limits has been increasing. As a result, more patients are evaluated for iron overload. Methods We compared serum levels of ferritin in 1188 Australian adults who participated in the 2005 Busselton Population Survey with levels from the 1995 survey. Parametric regression was used to assess the effects of body weight and biochemical parameters on serum level of ferritin to derive contemporary population-appropriate reference ranges. Results In 2005, age-adjusted levels of ferritin were 21% higher in men (P < .0001) and 10% higher in women (P = .01) than in 1995; 31% of men exceeded levels of 300 μg/L, compared with 23% in 1995. Body mass index (BMI) ≥25 kg/m2 was associated with higher levels of ferritin in men ≥35 years old and in postmenopausal women (P ≤ .002). Serum level of γ-glutamyltransferase (GGT) correlated with serum level of ferritin (P < .0001). In men, the estimated 95th percentiles ranged from 353 to 495 μg/L (<35 years), from 350 to 511 μg/L (≥35 years, BMI <25 kg/m2), and from 413 to 696 μg/L (≥35 years, BMI ≥25 kg/m2) when GGT levels were 10–75 IU/L. In women, the 95th percentiles ranged from 106 to 235 μg/L (premenopausal), from 222 to 323 μg/L (postmenopausal, BMI <25 kg/m2), and from 249 to 422 μg/L (postmenopausal, BMI ≥25 kg/m2) when GGT levels were 8–45 IU/L. Conclusion Serum levels of ferritin increased significantly between 1995 and 2005. Reference ranges that accommodate demographic and biomedical variations will assist clinicians in identifying individuals who require further evaluation for iron overload

    Healthcare system priorities for successful integration of genomics: An Australian focus

    Get PDF
    This paper examines key considerations for the successful integration of genomic technologies into healthcare systems. All healthcare systems strive to introduce new technologies that are effective and affordable, but genomics offers particular challenges, given the rapid evolution of the technology. In this context we frame internationally relevant discussion points relating to effective and sustainable implementation of genomic testing within the strategic priority areas of the recently endorsed Australian National Health Genomics Policy Framework. The priority areas are services, data, workforce, finances, and person-centred care. In addition, we outline recommendations from a government perspective through the lens of the Australian health system, and argue that resources should be allocated not to just genomic testing alone, but across the five strategic priority areas for full effectiveness

    Population-based genetic effects for developmental stuttering

    Get PDF
    Despite a lifetime prevalence of at least 5%, developmental stuttering, characterized by prolongations, blocks, and repetitions of speech sounds, remains a largely idiopathic speech disorder. Family, twin, and segregation studies overwhelmingly support a strong genetic influence on stuttering risk; however, its complex mode of inheritance combined with thus-far underpowered genetic studies contribute to the challenge of identifying and reproducing genes implicated in developmental stuttering susceptibility. We conducted a trans-ancestry genome-wide association study (GWAS) and meta-analysis of developmental stuttering in two primary datasets: The International Stuttering Project comprising 1,345 clinically ascertained cases from multiple global sites and 6,759 matched population controls from the biobank at Vanderbilt University Medical Center (VUMC), and 785 self-reported stuttering cases and 7,572 controls ascertained from The National Longitudinal Study of Adolescent to Adult Health (Add Health). Meta-analysis of these genome-wide association studies identified a genome-wide significant (GWS) signal for clinically reported developmental stuttering in the general population: a protective variant in the intronic or genic upstream region of SSUH2 (rs113284510, protective allele frequency = 7.49%, Z = −5.576, p = 2.46 × 10−8) that acts as an expression quantitative trait locus (eQTL) in esophagus-muscularis tissue by reducing its gene expression. In addition, we identified 15 loci reaching suggestive significance (p < 5 × 10−6). This foundational population-based genetic study of a common speech disorder reports the findings of a clinically ascertained study of developmental stuttering and highlights the need for further research

    Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

    Get PDF
    Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets

    Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals

    Get PDF
    Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic determinants associated with changes in glycemia over time might illuminate biological features that precede the development of T2D. Here we conducted a genome-wide association study of longitudinal fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. Fasting glucose change over time was defined as the slope of the line defined by multiple fasting glucose measurements obtained over up to 14 years of observation. We tested for associations of genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age at baseline, sex, and principal components of genetic variation. We found no genome-wide significant association (P < 5 × 10−8) with fasting glucose change over time. Seven loci previously associated with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change over time. Limited power influences unambiguous interpretation, but these da

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    Genomic testing for human health and disease across the life cycle: Applications and ethical, legal, and social challenges

    Get PDF
    The expanding use of genomic technologies encompasses all phases of life, from the embryo to the elderly, and even the posthumous phase. In this paper, we present the spectrum of genomic healthcare applications, and describe their scope and challenges at different stages of the life cycle. The integration of genomic technology into healthcare presents unique ethical issues that challenge traditional aspects of healthcare delivery. These challenges include the different definitions of utility as applied to genomic information; the particular characteristics of genetic data that influence how it might be protected, used and shared; and the difficulties applying existing models of informed consent, and how new consent models might be needed
    corecore