31 research outputs found

    Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores

    Get PDF
    AIMS: Sodium-channel blockers (SCBs) are associated with arrhythmia, but variability of cardiac electrical response remains unexplained. We sought to identify predictors of ajmaline-induced PR and QRS changes and Type I Brugada syndrome (BrS) electrocardiogram (ECG). METHODS AND RESULTS: In 1368 patients that underwent ajmaline infusion for suspected BrS, we performed measurements of 26 721 ECGs, dose-response mixed modelling and genotyping. We calculated polygenic risk scores (PRS) for PR interval (PRSPR), QRS duration (PRSQRS), and Brugada syndrome (PRSBrS) derived from published genome-wide association studies and used regression analysis to identify predictors of ajmaline dose related PR change (slope) and QRS slope. We derived and validated using bootstrapping a predictive model for ajmaline-induced Type I BrS ECG. Higher PRSPR, baseline PR, and female sex are associated with more pronounced PR slope, while PRSQRS and age are positively associated with QRS slope (P < 0.01 for all). PRSBrS, baseline QRS duration, presence of Type II or III BrS ECG at baseline, and family history of BrS are independently associated with the occurrence of a Type I BrS ECG, with good predictive accuracy (optimism-corrected C-statistic 0.74). CONCLUSION: We show for the first time that genetic factors underlie the variability of cardiac electrical response to SCB. PRSBrS, family history, and a baseline ECG can predict the development of

    Chronically elevated branched chain amino acid levels are pro-arrhythmic

    Get PDF
    Aims. Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. Methods and results. We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6–9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4–5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs—leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. Conclusions. Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries.

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10 CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 nea

    Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Get PDF
    BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P&lt;5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P&lt;10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P&lt;10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P&lt;0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Right ventricular failure following chronic pressure overload is associated with reduction in left ventricular mass: evidence for atrophic remodeling

    No full text
    We sought to study whether patients with right ventricular failure (RVF) secondary to chronic thromboembolic pulmonary hypertension (CTEPH) have reduced left ventricular (LV) mass, and whether LV mass reduction is caused by atrophy. The LV in patients with CTEPH is underfilled (unloaded). LV unloading may cause atrophic remodeling that is associated with diastolic and systolic dysfunction. We studied LV mass using cardiac magnetic resonance imaging (MRI) in 36 consecutive CTEPH patients (before/after pulmonary endarterectomy [PEA]) and 11 healthy volunteers selected to match age and sex of patients. We studied whether LV atrophy is present in monocrotaline (MCT)-injected rats with RVF or controls by measuring myocyte dimensions and performing in situ hybridization. At baseline, CTEPH patients with RVF had significantly lower LV free wall mass indexes than patients without RVF (35 ± 6 g/m(2) vs. 44 ± 7 g/m(2), p = 0.007) or volunteers (42 ± 6 g/m(2), p = 0.006). After PEA, LV free wall mass index increased (from 38 ± 6 g/m(2) to 44 ± 9 g/m(2), p = 0.001), as right ventricular (RV) ejection fraction improved (from 31 ± 8% to 56 ± 12%, p < 0.001). Compared with controls, rats with RVF had reduced LV free wall mass and smaller LV free wall myocytes. Expression of atrial natriuretic peptide was higher, whereas that of α-myosin heavy chain and sarcoplasmic reticulum calcium ATPase-2 were lower in RVF than in controls, both in RV and LV. RVF in patients with CTEPH is associated with reversible reduction in LV free wall mass. In a rat model of RVF, myocyte shrinkage due to atrophic remodeling contributed to reduction in LV free wall mas

    Sudden cardiac arrest associated with use of a non-cardiac drug that reduces cardiac excitability: evidence from bench, bedside, and community

    No full text
    Non-cardiac drugs that impair cardiac repolarization (electrocardiographic QT prolongation) are associated with an increased sudden cardiac arrest (SCA) risk. Emerging evidence suggests that non-cardiac drugs that impair cardiac depolarization and excitability (electrocardiographic QRS prolongation) also increase the risk for SCA. Nortriptyline, which blocks the SCN5A-encoded cardiac sodium channel, may exemplify such drugs. We aimed to study whether nortriptyline increases the risk for SCA, and to establish the underlying mechanisms. We studied QRS durations during rest/exercise in an index patient who experienced ventricular tachycardia during exercise while using nortriptyline, and compared them with those of 55 controls with/without nortriptyline and 24 controls with Brugada syndrome (BrS) without nortriptyline, who carried an SCN5A mutation. We performed molecular-genetic (exon-trapping) and functional (patch-clamp) experiments to unravel the mechanisms of QRS prolongation by nortriptyline and the SCN5A mutation found in the index patient. We conducted a prospective community-based study among 944 victims of ECG-documented SCA and 4354-matched controls to determine the risk for SCA associated with nortriptyline use. Multiple mechanisms may act in concert to increase the risk for SCA during nortriptyline use. Pharmacological (nortriptyline), genetic (loss-of-function SCN5A mutation), and/or functional (sodium channel inactivation at fast heart rates) factors conspire to reduce the cardiac sodium current and increase the risk for SCA. Nortriptyline use in the community was associated with a 4.5-fold increase in the risk for SCA [adjusted OR: 4.5 (95% CI: 1.1-19.5)], particularly when other sodium channel-blocking factors were present. Nortriptyline increases the risk for SCA in the general population, particularly in the presence of genetic and/or non-genetic factors that decrease cardiac excitability by blocking the cardiac sodium channe

    Role of sequence variations in the human ether-a-go-go-related gene (HERG, KCNH2) in the Brugada syndrome

    No full text
    Background: Brugada syndrome (BrS) is an inherited electrical disorder associated with a high incidence of sudden death. In a minority of patients, it has been linked to mutations in SCN5A, the gene encoding the pore-forming alpha-subunit of the cardiac Na+ channel. Other causally related genes still await identification. We evaluated the role of HERG (KCNH2), which encodes the alpha-subunit of the rapid delayed rectifier K+ channel (I-Kr), in BrS. Methods and results: In two unrelated SCN5A mutation-negative patients, different amino acid changes in the C-terminal domain of the HERG channel (G873S and N985S) were identified. Voltage-clamp experiments on transfected HEK-293 cells show that these changes increase I-Kr density and cause a negative shift of voltage-dependent inactivation, resulting in increased rectification. Action potential (AP) clamp experiments reveal increased transient HERG peak currents (I-peak) during phase-0 and phase-1 of the ventricular AP, particularly at short cycle length. Computer simulations demonstrate that the increased I-peak enhances the susceptibility to loss of the AP-dome typically in right ventricular subepicardial myocytes, thereby contributing to the BrS phenotype. Conclusion: Our study reveals a modulatory role Of I-Kr in BrS. These findings may provide better understanding of BrS and have implications for diagnosis and therapy. (c) 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserve
    corecore