120 research outputs found

    Matter effects in long baseline experiments, the flavor content of the heaviest (or lightest) neutrino and the sign of Delta m^2

    Full text link
    The neutrinos of long baseline beams travel inside the Earth's crust where the density is approximately rho = 2.8 g cm^-3. If electron neutrinos participate in the oscillations, matter effects will modify the oscillation probabilities with respect to the vacuum case. Depending on the sign of Delta m^2 an MSW resonance will exist for neutrinos or anti-neutrinos with energy approximately E_nu(res) = 4.7 |\Delta m^2|/(10^-3 eV^2) GeV. For Delta m^2 in the interval indicated by the Super-Kamiokande experiment this energy range is important for the proposed long baseline experiments. For positive Delta m^2 the most important effects of matter are a 9% (25%) enhancement of the transition probability P(nu_mu -> nu_e) for the KEK to Kamioka (Fermilab to Minos and CERN to Gran Sasso) beam(s) in the energy region where the probability has its first maximum, and an approximately equal suppression of P(antinu_mu -> antinu_e). For negative Delta m^2 the effects for neutrinos and anti-neutrinos are interchanged. Producing beams of neutrinos and antineutrinos and measuring the oscillation probabilities for both (nu_mu -> nu_e) and (antinu_mu -> antinu_e) transitions can solve the sign ambiguity in the determination of Delta m^2.Comment: Latex, 28 pages, 12 postscript figure

    Entanglement in a Solid State Spin Ensemble

    Full text link
    Entanglement is the quintessential quantum phenomenon and a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing (QIP) and the strongest forms of quantum cryptography. Spin ensembles, such as those in liquid state nuclear magnetic resonance, have been powerful in the development of quantum control methods, however, these demonstrations contained no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered phosphorus-doped silicon. We combined high field/low temperature electron spin resonance (3.4 T, 2.9 K) with hyperpolarisation of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% compared with the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, to 10^10 spin pairs, and represents an essential requirement of a silicon-based quantum information processor.Comment: 4 pages, 3 figures plus supporting information of 4 pages, 1 figure v2: Updated reference

    Deep images of cluster radio halos

    Get PDF
    New radio data are presented for the clusters A401, A545, A754, A1914, A2219 and A2390, where the presence of diffuse radio emission was suggested from the images of the NRAO VLA Sky Survey. Sensitive images of these clusters, obtained with the Very Large Array (VLA)at 20 cm confirm the existence of the diffuse sources and allow us to derive their fluxes and intrinsic parameters.The correlation between the halo radio power and cluster X-ray luminosity is derived for a large sample of halo clusters, and is briefly discussed.Comment: 9 pages, 13 figures, Astron. Astrophys. in pres

    Atmospheric neutrino observations and flavor changing interactions

    Get PDF
    Flavor changing (FC) neutrino-matter interactions can account for the zenith-angle dependent deficit of atmospheric neutrinos observed in the SuperKamiokande experiment, without directly invoking neither neutrino mass, nor mixing. We find that FC νμ\nu_\mu-matter interactions provide a good fit to the observed zenith angle distributions, comparable in quality to the neutrino oscillation hypothesis. The required FC interactions arise naturally in many attractive extensions of the Standard Model.Comment: RevTex, 4 pages, 2 postscript figures, some minor modifications in the text and few new references are added, no change in the results and conclusions, final version to be published in Phys. Rev. Let

    Measuring the Spectra of High Energy Neutrinos with a Kilometer-Scale Neutrino Telescope

    Get PDF
    We investigate the potential of a future kilometer-scale neutrino telescope such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos, in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dϕν/dEναEνβd\phi_\nu/dE_\nu \sim \alpha E_\nu^\beta, we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (α\alpha) as well as slope (β\beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.Comment: 21 pages, 7 figure

    Observational evidence for gravitationally trapped massive axion(-like) particles

    Full text link
    Unexpected astrophysical observations can be explained by gravitationally captured massive particles, which are produced inside the Sun or other Stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source. In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona - chromosphere transition region is suggestive for an omnipresent irradiation of the Sun. The same scenario fits other astrophysical X-ray observations. The radiative decay of a population of such elusive particles mimics a hot gas. X-ray observatories, with an unrivalled sensitivity below ~10 keV, can search for such particles. The elongation angle relative to the Sun is the relevant new parameter.Comment: 35 pages, LaTeX, 9 figures. Accepted by Astroparticle Physic

    Long-Baseline Study of the Leading Neutrino Oscillation at a Neutrino Factory

    Get PDF
    Within the framework of three-flavor neutrino oscillations, we consider the physics potential of \nu_e --> \nu_\mu appearance and \nu_\mu --> \nu_\mu survival measurements at a neutrino factory for a leading oscillation scale \delta m^2 ~ 3.5 \times 10^{-3} eV^2. Event rates are evaluated versus baseline and stored muon energy, and optimal values discussed. Over a sizeable region of oscillation parameter space, matter effects would enable the sign of \delta m^2 to be determined from a comparison of \nu_e --> \nu_\mu with \bar\nu_e --> \bar\nu_\mu event rates and energy distributions. It is important, therefore, that both positive and negative muons can be stored in the ring. Measurements of the \nu_\mu --> \nu_\mu survival spectrum could determine the magnitude of \delta m^2 and the leading oscillation amplitude with a precision of O(1%--2%).Comment: 33 pages, single-spaced Revtex, uses epsf.sty, 14 postscript figures. Added references, expanded conclusions, improved figs. 13 and 14. Version to be published in Phys. Rev.

    CP violation effect in long-baseline neutrino oscillation in the four-neutrino model

    Get PDF
    We investigate CP-violation effect in the long-baseline neutrino oscillation in the four-neutrino model with mass scheme of the two nearly degenerate pairs separated with the order of 1 eV, by using the data from the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiments along with the other accelerator and reactor experiments. By use of the most general parametrization of the mixing matrix with six angles and six phases, we show that the genuine CP-violation effect could attain as large as 0.3 for ΔP(νμντ)P(νμντ)P(νμˉντˉ)\Delta P(\nu_\mu\to\nu_\tau) \equiv P(\nu_\mu\to\nu_\tau) - P(\bar{\nu_\mu}\to\bar{\nu_\tau}) and that the matter effect is negligibly small such as at most 0.01 for ΔP(νμντ)\Delta P(\nu_\mu\to\nu_\tau) for Δm2=(15)×103eV2\Delta m^2 = (1-5)\times 10^{-3} {\rm eV}^2, which is the mass-squared difference relevant to the long-baseline oscillation.Comment: 21 pages in LaTeX, 9 ps figures. Some changes in the Introduction and Reference

    Update on neutrino mixing in the early Universe

    Get PDF
    From the current cosmological observations of CMB and nuclear abundances we show, with an analytic procedure, that the total effective number of extra neutrino species ΔNνtot<0.3\Delta N_{\nu}^{\rm tot}< 0.3. We also describe the possible signatures of non standard effects that could be revealed in future CMB observations. This cosmological information is then applied to neutrino mixing models. Taking into account the recent results from the SNO and SuperKamiokande experiments, disfavouring pure active to sterile neutrino oscillations, we show that all 4 neutrino mixing models, both of 2+2 and 3+1 type, lead to a full thermalization of the sterile neutrino flavor. Moreover such a sterile neutrino production excludes the possibility of an electron neutrino asymmetry generation and we conclude that ΔNνtot1\Delta N_{\nu}^{\rm tot}\simeq 1, in disagreement with the cosmological bound. This result is valid under the assumption that the initial neutrino asymmetries are small. We suggest the existence of a second sterile neutrino flavor, with mixing properties such to generate a large electron neutrino asymmetry, as a possible way out.Comment: 29 pages, 3 figures; to appear on Phys.Rev.D; added discussion (at page 19) and references; typos correcte
    corecore